
Acceleration Logging
Concept, Implementation, GATT Interface (SS2021)



Thomas Hoof

Slide 2 (SoSe 2021)

4th Semester

Agenda

▪ Bluetooth performance

▪ Bluetooth device information service

▪ Issue 230, Firmware crash after short time Bluetooth connection

▪ New / removed Features

▪ Implementation

▪ 2020: Winter Semester 2020/21

▪ 2021: Sommer Semester 2021

▪ Sample application (separate presentation)



Thomas Hoof

Slide 3 (SoSe 2021)

Bluetooth performance

▪ Very low bandwidth when transferring data via Bluetooth service Nordic NUS.

▪ Ringbuffer of 48.000 Byte (12 flash pages) size transferring with less than 300 bytes 

per second takes more than 160 seconds.

▪ Our goal for this semester is to integrate a flash chip with 8 Mbyte memory. 

Transferring this would take more than 7 hours.

▪ Analyze with Wireshark. 

Starting position



Thomas Hoof

Slide 4 (SoSe 2021)

Bluetooth performance

▪ Three Bluetooth packets are send in a burst. 

▪ Default setup of Nordic Softdevice is to handle three Bluetooth Notifications in 

parallel.

▪ After every burst there is a time delay of ~500ms.

▪ This is configured in ruuvi_nrf5_sdk15_communication_ble_gatt.c by setting 

gap_conn_params.min_conn_interval and gap_conn_params.max_conn_interval.

Histogram of 

time between 

Bluetooth 

packets.



Thomas Hoof

Slide 5 (SoSe 2021)

Bluetooth performance

▪ Changing gap_conn_params.min_conn_interval and 

gap_conn_params.max_conn_interval in 

ruuvi_nrf5_sdk15_communication_ble_gatt.c. 

▪ Test if Bluetooth performance is dependent of the sampling frequency.

▪ No long delays after changing the parameters.

Histogram of 

time between 

Bluetooth 

packets. In 

contrast to the 

original setup.



Thomas Hoof

Slide 6 (SoSe 2021)

Bluetooth performance

▪ Significant improvement of bandwidth 2700%

▪ No dependency from sampling frequency to bandwidth.

▪ No further improvement of bandwidth after enabling larger packet size.

Compare



Thomas Hoof

Slide 7 (SoSe 2021)

Bluetooth device information service

▪ Add automatic build number to former unused property „Software revision string“ of 

DIS Service.

▪ Build number is generated by Pre-Build script of Segger Studio:

"$(StudioDir)/bin/emScript" -load "$(ProjectDir)/buildnum.js“

▪ Script generates buildnum.h which is included by app_comms.c

Build number



Thomas Hoof

Slide 8 (SoSe 2021)

Bluetooth device information service

▪ Add information about available sensors to „Hardware revision string“ of DIS service 

to distinguish between different models.

▪ If function app_sensor_ctx_get() from app_sensor.c is available, enumerate 

Sensors and replace String „Check PCB“ by list of sensors.

Example of new DIS values

[Service] 0000180a-0000-1000-8000-00805f9b34fb: Device Information

[Characteristic] 00002a28-0000-1000-8000-00805f9b34fb: Software Revision 

String: 'Build 20210819_180233'

[Characteristic] 00002a26-0000-1000-8000-00805f9b34fb: Firmware Revision 

String: 'Ruuvi FW v0.0.1+debug'

[Characteristic] 00002a27-0000-1000-8000-00805f9b34fb: Hardware Revision 

String: 'With SHTCX DPS310 LIS2DH12'

[Characteristic] 00002a24-0000-1000-8000-00805f9b34fb: Model Number String: 

'RuuviTag B'

[Characteristic] 00002a29-0000-1000-8000-00805f9b34fb: Manufacturer Name 

String: 'Ruuvi Innovations Ltd'

List of available sensors



Thomas Hoof

Slide 9 (SoSe 2021)

Issue 230

NRF_ERROR_INVALID_STATE after stop notify on Bluetooth GATT connection.

Firmware crashes after short time Bluetooth connection



Thomas Hoof

Slide 10 (SoSe 2021)

New / removed Features

New Features Removed Features

Connecting Macronix Flash Download last sample

Replace Ringbuffer by FlashDB Proprietary GATT messages

FAL devices using Nordic Flash or 

RAM as backend*

Frequency divider

Query Flash statistic

Query Boot count

Streaming of acceleration data

*) See presentation of Jendrik and Jenny for architecture of FlashDB and description of 

the API needed to implement a FAL device.



Thomas Hoof

Slide 11 (SoSe 2021)

Implementation
Wrapping of data_get

Applications

comms
Gateway

NUS

acc_log

delegate

sensors

find_sensor

NRF15 SDK

GPIO

enable

interrupt

Interfaces

LIS2DH12

enable interrupt generation

get & parse

raw data

Task

flash_ringbufferstore

raw data

heartbeat

data_get original 

data_get

new

modified

1
2

3

4

5

6

2

3

app_sensor_get
1

2

Sequence when activating logging Sequence returning data



Thomas Hoof

Slide 12 (SoSe 2021)

Implementation
“Streaming”

App_acceleration_logging

LIS2DH12

on_fifo_full fifo_full_handler

RAM Flash

streaming==1

app_acc_log_transfer_ram_db

streaming==1 && 

rt_gatt_nus_is_connected()

schedule execution

Gateway

streaming==0

schedule

Main Thread

Interrupt Context

F
IF

O
 f

u
ll

in
te

rr
u

p
t

R
e
a

d
 F

IF
O

Read FIFO



Thomas Hoof

Slide 13 (SoSe 2021)

Files (1)

Name Status

app_accelerometer_logging.* new2020 Main part for acceleration logging.

app_comms.c modified GATT message added.

app_config.h modified Macro for conditional compiling 

added.

Configuration for memory 

management of 

Ringbuffer/FlashDB added.

app_sensor.* modified Function for finding sensor 

context added.

main.c modified Initialization of acceleration 

logging added.

ruuvi_nrf5_sdk15_power.c modified Function which return boot count 

added.



Thomas Hoof

Slide 14 (SoSe 2021)

Files (2)

Name Status

ruuvi_interface_lis2dh12.* modified Access to raw acceleration data 

added.

Split up data_get() into getting 

data and parsing data.

ruuvi_interface_rtc.h

ruuvi_nrf5_sdk15_rtc_mcu.c

modified Function for setting RTC added.

ruuvi_nrf5_sdk15_communic

ation_ble_gatt.c

modified Buildnumber added to Bluetooth 

DIS service.

ruuvi_task_flashdb.* new2021 Supporting functions needed to 

integrate FlashDB into Ruuvi

Firmware.

Also contains functions authored 

by Jenny and Jendrik.



Thomas Hoof

Slide 15 (SoSe 2021)

Files (3)

Name Status

ruuvi_task_flash_ringbuffer.* new2020

rewrite

2021

This module provides a frontend 

to FlashDB for persisting 

acceleration data.

ruuvi.firmware.c/src/ruuvi.libra

ries.c/src/libs/flashdb/

new2021 Source files of FlashDB. 

Forked from 

https://github.com/armink/FlashD

B

https://github.com/armink/FlashDB


Thomas Hoof

Slide 16 (SoSe 2021)

Implementation

rd_status_t app_enable_sensor_logging(

const bool use_ram_db, 

const bool format_db)

Enables the logging of acceleration data.

use_ram_db in Database in RAM is used in case of “streaming” of 

acceleration data.

format_db in This parameter is set to true if logging is enabled by 

gateway to ensure the database is cleared. When re-

enabling logging after reboot it is set to false.

returns Status code of executing the function.

app_accelerometer_logging.c

new2020

Special error codes

RD_ERROR_INVALID_STATE When logging is already enabled/disabled.

RD_ERROR_NOT_FOUND When LIS2DH12 is not available.



Thomas Hoof

Slide 17 (SoSe 2021)

Implementation

rd_status_t app_disable_sensor_logging(void)

Disables the logging of acceleration data by executing the following steps.

1. Disable GPIO interrupt.

2. Disable FIFO on sensor.

3. Disable generating interrupt on sensor.
4. Restore original data_get() function in sensor context and replace it by 

new function lis2dh12_logged_data_get().

returns Status code of executing the function.

app_accelerometer_logging.c

Special error codes

RD_ERROR_INVALID_STATE When logging is already enabled/disabled.

RD_ERROR_NOT_FOUND When LIS2DH12 is not available.

new2020



Thomas Hoof

Slide 18 (SoSe 2021)

Implementation

void on_fifo_full (const ri_gpio_evt_t evt)

void fifo_full_handler (void * p_event_data, 

uint16_t event_size)

The two functions together form the interrupt handler. When FIFO in 
LIS2DH12 is full the interrupt triggers on_fifo_full(). If using streaming 

this function reads the FIFO and writes the values to RAMDB. Without 
streaming it schedules the execution of fifo_full_handler() outside 

interrupt context. 

The function fifo_full_handler() reads the FIFO and stores the data 

inside the ringbuffer.

See ruuvi_interface_scheduler.h and ruuvi_interface_gpio_interrupt.h for 

parameters used in these functions.

app_accelerometer_logging.c

new2020

rewrite2021



Thomas Hoof

Slide 19 (SoSe 2021)

Implementation

void pack(const uint8_t resolution, 

const uint16_t sizeData, 

const uint8_t* const data, 

uint8_t* const packeddata)

This function stores raw accelerometer values in 8/10/12 Bit format in 

compact form (without unused bits). It is a frontend to the functions 

pack8/10/12().

resolution in Resolution of the samples.

sizeData in Size of input data.

data in Input data.

packeddata in/out Memory for storing packed data.

app_accelerometer_logging.c

new2021



Thomas Hoof

Slide 20 (SoSe 2021)

Implementation

rd_status_t lis2dh12_logged_data_get (

rd_sensor_data_t * const data)

This function retrieves raw accelerometer values from RAM. The values are 
parsed and returned inside data. It is called by app_sensor_get() inside 

app_sensor.c when accelerometer logging is active.

raw_data in/out Memory for storing accelerometer values.

returns Status code of executing this function.

app_accelerometer_logging.c

new2020



Thomas Hoof

Slide 21 (SoSe 2021)

Implementation

rd_status_t app_acc_logging_state(void)

This function is used to query the state of accelerometer logging. It is called 

when a control message is received by GATT/UART to return this state to the 

caller.

returns Status code regarding the state of accelerometer logging.

app_accelerometer_logging.c

Special error codes

RD_SUCCESS When logging is active.

RD_ERROR_INVALID_STATE When logging is not active.

new2020



Thomas Hoof

Slide 22 (SoSe 2021)

Implementation

rd_status_t app_acc_logging_configuration_set (

rt_sensor_ctx_t* sensor, 

rd_sensor_configuration_t* new_config)

This function is called when a request to update the sensor configuration is 

received by GATT/UART. It checks every configuration parameter if it should 

be changed. It also checks if the value is different than actual value. If a 

change is detected it clears the ringbuffer, updates the configuration and 

stores the configuration in flash.

sensor in Sensor context of the sensor which configuration 

should be changed.

new_config in Structure containing the new configuration values.

returns Status code of processing the message.

app_accelerometer_logging.c

new2020



Thomas Hoof

Slide 23 (SoSe 2021)

Implementation

rd_status_t app_acc_logging_init(void)

Initialize acceleration logging during boot. When logging was active before 

reboot it will be activated.

When logging was not active before reboot this function return 

RD_SUCCESS without activating acceleration logging.

The state if logging was active before reboot is saved into FlashDB. Key-

Value-Database.

This function is called from main.c / setup().

returns Status code of processing the message.

app_accelerometer_logging.c

new2020

rewrite2021



Thomas Hoof

Slide 24 (SoSe 2021)

Implementation

rd_status_t app_acc_logging_uninit(void)

The uninitialization of acceleration logging disables the logging when it is 

actually active.

When logging is not active this function return RD_SUCCESS without doing 

anything.

returns Status code of processing the message.

app_accelerometer_logging.c

new2020



Thomas Hoof

Slide 25 (SoSe 2021)

Implementation

rd_status_t app_acc_logging_send_logged_data(

const ri_comm_xfer_fp_t reply_fp)

This function is called from handle_lis2dh12_comms_v2() if the gateway 

requests sending of logged acceleration data. The function triggers FlashDB
to read data. Data from the database is read via the callback function bool 

callback_send_data_block(). Inside the callback function the data is 

send to the requestor.

reply_fp in Callback to function which actually sends the bytes to 

the gateway.

returns Status code of processing the message.

app_accelerometer_logging.c

new2020

rewrite2021



Thomas Hoof

Slide 26 (SoSe 2021)

Implementation

rd_status_t app_acc_logging_send_eof_v2(

const ri_comm_xfer_fp_t reply_fp, 

const rd_status_t status_code, 

const uint16_t crc)

This function is called from app_acc_logging_send_logged_data() after 

all data is send to the gateway. It reads the configuration of the sensor and 

sends this to the gateway. This function generates the “end of data” message.

reply_fp in Callback to function which actually sends the bytes to 

the gateway.

status_code in Status code to send to the gateway

crc in CRC to send to the gateway.

returns Status code of processing the message.

app_accelerometer_logging.c

new2021



Thomas Hoof

Slide 27 (SoSe 2021)

Implementation

void app_acc_log_transfer_ram_db (

void * p_event_data, 

uint16_t event_size)

Execution of this function is scheduled if “streaming” is active and 
rt_gatt_nus_is_connected() returns true.

It starts reading currently logged data from the FlashDB and transferring the 

data to the gateway.

Scheduling of this function is done inside on_fifo_full() using 

ri_scheduler_event_put().

app_accelerometer_logging.c

new2021



Thomas Hoof

Slide 28 (SoSe 2021)

Implementation

int64_t fdb_timestamp_get (void)

Callback for use by FlashDB to retrieve the timestamp of the current new 

entry.

returns Timestamp of actual acceleration sample.

app_accelerometer_logging.c

new2021



Thomas Hoof

Slide 29 (SoSe 2021)

Implementation

bool callback_send_data_block(fdb_tsl_t tsl, 

void *arg)

Callback function for use with FlashDB. When reading the database this 

function will be called for every entry.

This function calls app_comms_blocking_send() to send the data to the 

gateway.

returns If true, processing of entries will stop.

app_accelerometer_logging.c

new2021



Thomas Hoof

Slide 30 (SoSe 2021)

Implementation

rd_status_t app_acc_logging_statistic (

uint8_t* const statistic)

This function is called from handle_lis2dh12_comms() after the gateway 

sends the message to retrieve flash statistics. It calls 
rt_flash_ringbuffer_statistic() to retrieve flash statics. 

statistic In/

out

Memory to store the statistic values. See description of 

“Flash static response” for memory layout.

returns Status code of processing the message.

app_accelerometer_logging.c

new2021



Thomas Hoof

Slide 31 (SoSe 2021)

Implementation

void handle_comms (

const ri_comm_xfer_fp_t reply_fp, 

const uint8_t * const raw_message,

size_t data_len)

Added new switch/case which forwards messages regarding configuration 

and control of acceleration logging to the function 
handle_lis2dh12_comms().

app_comms.c

modified2020



Thomas Hoof

Slide 32 (SoSe 2021)

Implementation

rd_status_t handle_lis2dh12_comms/

handle_lis2dh12_comms_v2/

handle_rtc_comms_v2

(const ri_comm_xfer_fp_t reply_fp, 

const uint8_t * const raw_message,

size_t data_len)

These three functions handles the GATT/UART communication needed to 

control the functionality of acceleration logging and RTC. The functions are 

grouped into proprietary messages regarding LIS2DH12 and standard 

messages regarding LIS2DH12 or real time clock.

reply_fp in Function pointer to reply function.

raw_message in Message received.

data_len in Length of the received message.

returns Status code of processing the message.

app_comms.c

new2020

rewrite2021



Thomas Hoof

Slide 33 (SoSe 2021)

Implementation

rd_status_t dis_init (

ri_comm_dis_init_t * const p_dis, 

const bool secure)

If app_sensor_ctx_get() from app_sensors.c is available replace 

hardware revision string by list of available sensors.

app_comms.c

modified2021



Thomas Hoof

Slide 34 (SoSe 2021)

Implementation

rd_status_t ri_gatt_dis_init (

const ri_comm_dis_init_t * const p_dis)

Add buildnumber to former unused property sw_rev_str of 

ble_dis_init_t.

ruuvi_nrf5_sdk15_communication_ble_gatt.c

modified2021



Thomas Hoof

Slide 35 (SoSe 2021)

Implememtation

▪ Added macro APP_SENSOR_LOGGING to control compilation of 

app_accelerometer_logging.*

▪ When APP_SENSOR_LOGGING is not defined or is defined as 0 the functionality of 

logging of acceleration data is not available in the application.

▪ This module also contains macros for memory separation between acceleration 

logging and environmental logging. The relevant macros are 
APP_FLASH_LOG_DATA_RECORDS_NUM and RT_FLASH_RINGBUFFER_MAXSIZE.

app_config.h



Thomas Hoof

Slide 36 (SoSe 2021)

Implementation

void heartbeat (void * p_event, 

uint16_t event_size)

Debug output is added to this function to watch the functionality.

app_heartbeat.c

modified2020



Thomas Hoof

Slide 37 (SoSe 2021)

Implementation

rt_sensor_ctx_t* app_sensor_find (

const char *name)

Find sensor by it’s name. Works only with initialized sensors, will not return a 

sensor which is supported in firmware but not initialized.

This function is called by app_enable_sensor_logging() / 

app_disable_sensor_logging() to retrieve the sensor context.

name in Name of the sensor.

returns When sensor is found return it’s sensor context structure.

app_sensor.c

new2020



Thomas Hoof

Slide 38 (SoSe 2021)

Implementation

void setup (void)

Added call to app_acc_logging_init() to initialize acceleration logging 

when desired.

main.c

modified2020



Thomas Hoof

Slide 39 (SoSe 2021)

Implementation

rd_status_t ri_lis2dh12_acceleration_raw_get (

uint8_t * const raw_data)

This functions read raw acceleration values from the registers of LIS2DH12. It 

is called from the interrupt handler inside app_accelerometer_logging and 
from ri_lis2dh12_data_get() inside this module.

raw_data in/out Memory for storing raw accelerometer values.

returns RD_SUCCESS: When data could be retrieved from 

LIS2DH12.

RD_ERROR_INTERNAL: In case of error.

ruuvi_interface_lis2dh12.c

new2020



Thomas Hoof

Slide 40 (SoSe 2021)

Implementation

rd_status_t ri_lis2dh12_data_get (

rd_sensor_data_t * const data)

The original function ri_lis2dh12_data_get() is split into retrieving raw 

values from the sensor and parsing these data. Parsing is done by 
ri_lis2dh12_raw_data_parse().

This function is used when the acceleration logging is not active. If 

acceleration logging is active this function is replaced by 
lis2dh12_logged_data_get() inside app_accelerometer_logging.c.

data in/out Structure for storing parsed accelerometer values.

returns Status code of executing this function.

ruuvi_interface_lis2dh12.c

modified2020



Thomas Hoof

Slide 41 (SoSe 2021)

Implementation

rd_status_t ri_lis2dh12_raw_data_parse (

rd_sensor_data_t * const data, 

axis3bit16_t *raw_acceleration, 

uint8_t *raw_temperature)

This function parses raw values from the sensor and stores the values inside 
data. It is called from ri_lis2dh12_data_get() and from 

lis2dh12_logged_data_get().

data in/out Structure for storing parsed accelerometer values.

raw_accerat

ion

in Raw acceleration values.

raw_tempera

ture

in Raw temperature value. When used from 

app_accelerometer_logging.c this parameter is 

NULL. 

returns Status code of executing this function.

ruuvi_interface_lis2dh12.c

new2020



Thomas Hoof

Slide 42 (SoSe 2021)

Implementation

rd_status_t ri_set_rtc_millis(uint64_t millis)

Set system time by external source. Set RTC to zero.

millis in External time.

returns RD_SUCCESS when success.

RD_ERROR_NOT_INITIALIZED when RTC is not 

initialized.

ruuvi_nrf5_sdk_rtc_mcu.c / ruuvi_interface_rtc.h

new2020



Thomas Hoof

Slide 43 (SoSe 2021)

Implementation

rd_status_t ri_power_read_boot_count

(uint32_t *boot_count)

Return boot count.

boot_count out Return boot count.

returns RD_SUCCESS when success, otherwise any error code.

ruuvi_nrf5_sdk15_power.c / ruuvi_nrf5_sdk15_power.h

new2021



Thomas Hoof

Slide 44 (SoSe 2021)

Implementation

rd_status_t rt_flashdb_to_ruuvi_error

(fdb_err_t fdb_err)

This function converts an error code of FlashDB to an Ruuvi error code.

Fdb_err in Error code of FlashDB.

returns Ruuvi error code which represents the state of FlashDB.

ruuvi_task_flashdb.c

new2021



Thomas Hoof

Slide 45 (SoSe 2021)

Implementation

rd_status_t rt_flash_ringbuffer_create(

const char *partition, 

fdb_get_time get_time, 

const bool format_db)

This function initializes an instance of timeseries database. It is called during 

boot to open an existing database or during activation of acceleration logging 

to create a new, empty database.

partition in Name of the partition of the FAL device where the 

database will be stored.

get_time in Function pointer to callback function. This function 

is used by timeseries database to retrieve the 

current timestamp.

format_db in Whether to force to create a empty database.

returns Ruuvi error code

ruuvi_task_flash_ringbuffer.c

new2020

rewrite2021



Thomas Hoof

Slide 46 (SoSe 2021)

Implementation

rd_status_t rt_flash_ringbuffer_write(

const uint16_t size, const void* data)

This function writes data to FlashDB.

size in Size of data to write.

data in Pointer to data.

returns Ruuvi error code

ruuvi_task_flash_ringbuffer.c

new2020

rewrite2021



Thomas Hoof

Slide 47 (SoSe 2021)

Implementation

rd_status_t rt_flash_ringbuffer_read(

const fdb_tsl_cb callback, 

const ri_comm_xfer_fp_t reply_fp, 

uint16_t* crc)

This function starts reading the timeseries database. Reading data from 

timeseries database is done by iterating all entries. For every entry a callback 

function is called.

callback in Callback function which would be called for every 

entry.

reply_fp in Function pointer to callback function which sends 

the data to the requestor using BLE.

crc In/out CRC16 value which gets calculated over all data 

send to the requestor.

returns Ruuvi error code

ruuvi_task_flash_ringbuffer.c

new2020

rewrite2021



Thomas Hoof

Slide 48 (SoSe 2021)

Implementation

rd_status_t rt_flash_ringbuffer_clear (void)

rd_status_t rt_flash_ringbuffer_drop (void)

The function rt_flash_ringbuffer_clear clears the content of the ringbuffer.

The function rt_flash_ringbuffer_drop deinitializes the timeseries database. It 

does not free nor erase the flash memory used by the database.

returns Ruuvi error code

ruuvi_task_flash_ringbuffer.c

new2020

rewrite2021



Thomas Hoof

Slide 49 (SoSe 2021)

Implementation

rd_status_t rt_flash_ringbuffer_statistic (

uint8_t* const statistic)

This function reads some statistics about the usage of the internal Nordic 

Flash memory and returns them.

statistic In/out Memory for storing statistics. 

returns Ruuvi error code

ruuvi_task_flash_ringbuffer.c

new2021



Thomas Hoof

Slide 50 (SoSe 2021)

GATT Interface

Communication between Gateway and Sensor is done via Bluetooth Low Energy. It 

uses the Nordic UART service which itself uses the Bluetooth GATT protocol.

Three types of messages are used.

1. The Gateway sends control messages to the sensor to set or read configuration or 

start transmission of logged data.

2. The Sensor responds to control messages via response messages. This message 

type transports status information or configuration data.

3. If the Gateway requests the Sensor to send logged data, this data is sent by data 

messages. To transport all data many data messages are used in sequence. The 

end of data is signaled by a response message.

The messages are differentiated by the first byte which is noted in the table on the next 

slide in the first line.

In case of a fatal error there may be no response by the sensor.

Control messages must be padded by nullbytes to a minimum length of 11 bytes. This 

requirement is introduced by the Ruuvi firmware. The padding bytes are not shown in 

the following description of the messages.

General usage



Thomas Hoof

Slide 51 (SoSe 2021)

GATT Interface

Control message

0x4A 0x4A + Type

Response message

0x4A 0x4A + Type

Data 

Messa

ge

0x11
Type Message Status Time Config End of 

data

0x11 Logged Data Error Succes Succes

0x02 Set Config Always

0x03 Get Config Always

0x08 Set Logging Always

0x08 Get Logging Always

Control message

0x21 0x21 + Type

Response message

0x21 0x21 + Type

0x08 Set Time Always

0x09 Get Time Always

Standard messages



Thomas Hoof

Slide 52 (SoSe 2021)

GATT Interface

Control message

0xFA 0xFA + Type

Response message

0xFB + Type

Type Message Status 

(0x00)

Statistic 

(0x0D)

Boot 

Count 

(0x0E)

0x0D Flash statistic Error Success

0x0E Boot count Always Success

Proprietary messages



Thomas Hoof

Slide 53 (SoSe 2021)

GATT Interface

A status response is used by the sensor when there are no data to return. This 

message is used as response to several control messages. 

The concrete content of a status response is as follows 0x4a 0x4A Type SS. 

The Type byte reflects the same value as transmitted to the sensor in the command 

message.

The byte SS contains the information about the status. The value is equal to the bit 

position of the error code plus one. See file ruuvi_driver_error.h for an explanation of 

the bits from the status value.

As an example: RD_ERROR_NOT_INITIALIZED is defined as 2^19. If this condition 

would be returned as error state using a status response the value 20 = 19 + 1 would 

be returned.

Status response



Thomas Hoof

Slide 54 (SoSe 2021)

GATT Interface

This message starts transmitting the logged acceleration data from the ringbuffer. The 

transmission of the data is done via data messages. It is followed by an end of data 

message which signals the end of the data. After downloading the logged data, the 

ringbuffer is empty.

This message takes one parameters. After removing the possibility to download the last 
sample this parameter must have the value 0x01.

The concrete content of this message is: 0x4A 0x4A 0x11 0x01.

If acceleration logging is not active, the Sensor responds a status response containing 
error code RD_ERROR_INVALID_STATE.

Transmit logged data



Thomas Hoof

Slide 55 (SoSe 2021)

GATT Interface

This message is returned by the sensor after returning data. It signals the end of the 

transmission. This message contains nine parameters. The current configuration of the 

acceleration sensor are the first eight parameter. The structure is the same as shown in 

the set configuration message. The CRC16 value of the transmitted data is the 9th 

parameter.

To compute the CRC16 value the polynom 0x11021 with the initial value 0xFFFF is 

used. The output bytes are not reversed and not XOR’d. The CRC value is of size 2 

bytes. It is transferred in little-endian byte sequence.

The concrete content of this message is 
0x4A 0x4A 0x11 SS P1 P2 P3 P4 P5 P6 P7 P8 CRC1 CRC2.

See “Set configuration” on next slide for description of the parameters P1 to P8. 

SS is the status code, see “Status response”.

End of data message



Thomas Hoof

Slide 56 (SoSe 2021)

GATT Interface

This message is used to set the configuration of the acceleration sensor (LIS2DH12). 

The message takes 8 Parameters.

It’s concrete content is: 0x4A 0x4A 0x02 P1 P2 P3 P4 P5 P6 P7 P8

Set configuration of acceleration sensor

Parameter Description

P1 Rate of sampling in samples per second. Allowed values are 

1Hz, 10Hz, 25Hz, 50Hz, 100Hz, 200Hz, 400Hz.

P2 Resolution in bits. Allowed values are 8, 10, 12.

P3 Measuring range. Allowed values are 2G, 4G, 8G, 16G.

P4 DSP function. See datasheet of LIS2DH12.

P5 DSP parameter. See datasheet of LIS2DH12.

P6 Mode of operation. Allowed values are 0xF2, 0xF3, 0xF4.

P7 Frequency divider. Divide the sample frequency by this value.

P8 Reserved. Set to 0x00.



Thomas Hoof

Slide 57 (SoSe 2021)

GATT Interface

This message is used to read the configuration of the acceleration sensor (LIS2DH12). 

The message takes no parameters. The Sensor responds to this message either by a 

status response containing an error code or by a response message which transmits 

the configuration. If the status code signals an error the transmitted values are 

undefined.

The concrete content of this message is: 0x4A 0x4A 0x03.

The concrete content of the message which returns the configuration is

0x4A 0x4A 0x03 SS P1 P2 P3 P4 P5 P6 P7 P8.

See “Set configuration” for description of return parameters. SS is the status code see 

“Status response” for explanation.

Read configuration



Thomas Hoof

Slide 58 (SoSe 2021)

GATT Interface

This message is used to set the RTC of the sensor to a timestamp which is part of the 

message. The time is expressed in milliseconds. The value must be transmitted in little-

endian byte sequence. The sensor responds to this message with a status response.

The concrete content of this message is 
0x21 0x21 0x08 XX XX XX XX XX XX XX XX

Set system time



Thomas Hoof

Slide 59 (SoSe 2021)

GATT Interface

This message is used to read the RTC of the sensor. The sensor responds to this 

message with a timestamp response. If the status code signals an error the transmitted 

value is undefined.

The concrete content of this message is 0x21 0x21 0x09.

The concrete content of a timestamp response is the following
0x21 0x21 0x09 SS XX XX XX XX XX XX XX XX. Where SS is the status code.

The timestamp value is transmitted in little-endian byte sequence.

Get system time



Thomas Hoof

Slide 60 (SoSe 2021)

GATT Interface

This message is used to activate or deactivate acceleration logging. It takes one 

parameter. The parameter is interpreted as a Boolean value. If it maps to true, 

acceleration logging is activated. If it maps to false, acceleration logging is deactivated. 

The sensor responds to this message using a status response. Activating acceleration 

logging when it is already active results in an error. Deactivating acceleration logging 

when it is not active results in an error.

The concrete content of this message is 0x4A 0x4A 0x08 XX. The parameter XX 

may have one of the following values.

Activate/Deactivate logging

Parameter Description

0x00 No logging

0x01 Logging of acceleration data to flash.

0x02 Logging of acceleration data to RAM. Used for logging of 

high frequency sampling. 

If someone is connected to NUS, the data from RAM is 

immediately transferred.



Thomas Hoof

Slide 61 (SoSe 2021)

GATT Interface

This message is used to query the status of acceleration logging. The sensor responds 

to this message with a status response. If logging is active, the response contains the 
status RD_SUCCESS if logging is not active the status is 

RD_ERROR_NOT_INITIALIZED.

The concrete content of this message is 0x4A 0x4A 0x09.

Query state of logging



Thomas Hoof

Slide 62 (SoSe 2021)

GATT Interface (proprietary)

This message is used to query flash usage. The concrete content of this message is 
0xFA 0xFA 0x0D. The sensor responds several values which were retrieved from the 

Nordic softdevice by calling fds_stat().

The following table shows the response Message to this command.

Query flash statistic

Byte +0 +1

0 0xFB 0x0D

2 SS Logging status

4 Unused (0xFF) Unused (0xFF)

6 Unused (0xFF) Valid records (L)

8 Valid records (H) Dirty records (L)

10 Dirty records (H) Words reserved (L)

12 Words reserved (H) Words used (L)

14 Words used (H) Largest contig (L)

16 Largest contig (H) Freeable words (L)

18 Freeable words (H)



Thomas Hoof

Slide 63 (SoSe 2021)

GATT Interface (proprietary)

Value Description

SS Status of executing this command. If this indicates an 

error, the following values are unpredicted.

Logging status Background error code of logging thread.

Unused bytes Reserved for retrieving DB usage.

Valid records The number of valid records.

Dirty records The number of deleted ("dirty") records.

Words reserved The number of words reserved.

Words used The number of words written to flash, including those 

reserved for future writes.

Largest contig The largest number of free contiguous words in the file 

system.

Freeable words The largest number of words that can be reclaimed by 

garbage collection.

Flash statistic response



Thomas Hoof

Slide 64 (SoSe 2021)

GATT Interface (proprietary)

This message is used to query the boot count. The purpose is to check the quality of 

our implementation.

The concrete content of this message is 0xFA 0xFA 0x0E.

The Sensor responds with returning the boot count. The value is stored inside flash 

memory.

The concrete content of the response message is: 
0xFB 0x0E SS BC1 BC2 BC3 BC4.

Where SS is the status code of executing the command. If there is an error, the content 

of the following bytes is unpredictable.

BC1 BC2 BC3 BC4 are the bytes from the boot counter. This value is of type 32 Bit 

unsigned integer. The bytes are transferred in little-endian byte sequence.

Query boot count



Thomas Hoof

Slide 65 (SoSe 2021)

GATT Interface
Communication example


