
Acceleration Logging
Concept, Implementation, GATT Interface



Thomas Hoof

Slide 2 (WiSe 2020/21)

Concept
Wrapping of data_get

Applications

comms
Gateway

UART

acc_log

delegate

sensors

find_sensor

NRF15 SDK

GPIO

enable

interrupt

Interfaces

LIS2DH12

enable interrupt generation

get & parse

raw data

Task

flash_ringbufferstore

raw data

heartbeat

data_get original 

data_get

new

modified

1
2

3

4

5

6

2

3

app_sensor_get
1

2

Sequence when activating logging Sequence returning data



Thomas Hoof

Slide 3 (WiSe 2020/21)

Files (1)

Name Status

app_accelerometer_logging.* new Main part for acceleration logging.

app_comms.c modified GATT message added.

app_config.h modified Added macro for conditional 

compiling.

app_heartbeat.c modified Disable environment logging 

when acceleration logging.

app_sensor.* modified Function for finding sensor 

context added.

main.c modified Initialization of acceleration 

logging added.



Thomas Hoof

Slide 4 (WiSe 2020/21)

Files (2)

Name Status

ruuvi_endpoint.h todo New constants for messages 

must be defined.

ruuvi_interface_lis2dh12.* modified Access to raw acceleration data 

added.

Split up data_get() into getting 

data and parsing data.

ruuvi_interface_rtc.h

ruuvi_nrf5_sdk15_rtc_mcu.c

modified Function for setting RTC added.



Thomas Hoof

Slide 5 (WiSe 2020/21)

Implementation

rd_status_t app_enable_sensor_logging(void)

rd_status_t app_disable_sensor_logging(void)

Enables/Disables the logging of acceleration data by executing the following 

steps.

1. Enable/disable GPIO interrupt.

2. Enable/disable FIFO on sensor.

3. Enable/disable generating interrupt on sensor.
4. Save/restore original data_get() function in sensor context and replace 

it by new function lis2dh12_logged_data_get().

returns Status code of executing the function.

app_accelerometer_logging.c

new

Special error codes

RD_ERROR_INVALID_STATE When logging is already enabled/disabled.

RD_ERROR_NOT_FOUND When LIS2DH12 is not available.



Thomas Hoof

Slide 6 (WiSe 2020/21)

Implementation

void on_fifo_full (const ri_gpio_evt_t evt)

void fifo_full_handler (void * p_event_data, 

uint16_t event_size)

The two functions together form the interrupt handler. When FIFO in 
LIS2DH12 is full the interrupt triggers on_fifo_full(). This function 

schedules the execution of fifo_full_handler() outside interrupt 

context. 

The function fifo_full_handler() reads the FIFO and stores the data 

inside the ringbuffer.

See ruuvi_interface_scheduler.h and ruuvi_interface_gpio_interrupt.h for 

parameters used in these functions.

app_accelerometer_logging.c

new



Thomas Hoof

Slide 7 (WiSe 2020/21)

Implementation

void pack8/10/12(const uint16_t sizeData, 

const uint8_t* const data, 

uint8_t* const packeddata)

These functions store raw accelerometer values in 8/10/12 Bit format in 

compact form (without unused bits). 

sizeData in Size of input data.

data in Input data.

packeddata in/out Memory for storing packed data.

app_accelerometer_logging.c

new



Thomas Hoof

Slide 8 (WiSe 2020/21)

Implementation

rd_status_t lis2dh12_logged_data_get (

rd_sensor_data_t * const data)

This function retrieves raw accelerometer values from RAM. The values are 
parsed and returned inside data. It is called by app_sensor_get() inside 

app_sensor.c when accelerometer logging is active.

raw_data in/out Memory for storing accelerometer values.

returns Status code of executing this function.

app_accelerometer_logging.c

new



Thomas Hoof

Slide 9 (WiSe 2020/21)

Implementation

rd_status_t app_acc_logging_send_last_sample(

const ri_comm_xfer_fp_t reply_fp)

This function is called when a request to send the last sample is received by 

GATT/UART. It retrieves the last sample from RAM, does the compacting of 
the bits by calling pack8/10/12() and sends the data to the requestor.

reply_fp in Function pointer to reply function.

returns Status code of processing the message.

app_accelerometer_logging.c

new

Special error codes

RD_ERROR_INVALID_STATE When logging is not active.



Thomas Hoof

Slide 10 (WiSe 2020/21)

Implementation

rd_status_t app_acc_logging_state(void)

This function is used to query the state of accelerometer logging. It is called 

when a control message is received by GATT/UART to return this state to the 

caller.

returns Status code regarding the state of accelerometer logging.

app_accelerometer_logging.c

new

Special error codes

RD_SUCCESS When logging is active.

RD_ERROR_INVALID_STATE When logging is not active.



Thomas Hoof

Slide 11 (WiSe 2020/21)

Implementation

rd_status_t app_acc_logging_configuration_set (

rt_sensor_ctx_t* sensor, 

rd_sensor_configuration_t* new_config)

This function is called when a request to update the sensor configuration is 

received by GATT/UART. It checks every configuration parameter if it should 

be changed. It also checks if the value is different than actual value. If a 

change is detected it clears the ringbuffer, updates the configuration and 

stores the configuration in flash.

sensor in Sensor context of the sensor which configuration 

should be changed.

new_config in Structure containing the new configuration values.

returns Status code of processing the message.

app_accelerometer_logging.c

new



Thomas Hoof

Slide 12 (WiSe 2020/21)

Implementation

rd_status_t app_acc_logging_init(void)

Initialize acceleration logging during boot. When logging was active before 

reboot it will be activated.

When logging was not active before reboot this function return 

RD_SUCCESS without activating acceleration logging.

The state if logging was active before reboot is detected by looking for the 

ringbuffer. When the ringbuffer exists, the logging must be active before 

reboot.

This function is called from main.c / setup().

returns Status code of processing the message.

app_accelerometer_logging.c

new



Thomas Hoof

Slide 13 (WiSe 2020/21)

Implementation

rd_status_t app_acc_logging_uninit(void)

The uninitialization of acceleration logging disables the logging when it is 

actually active.

When logging is not active this function return RD_SUCCESS without doing 

anything.

returns Status code of processing the message.

app_accelerometer_logging.c

new



Thomas Hoof

Slide 14 (WiSe 2020/21)

Implementation

void handle_comms (

const ri_comm_xfer_fp_t reply_fp, 

const uint8_t * const raw_message,

size_t data_len)

Added new switch/case which forwards messages regarding configuration 

and control of acceleration logging to the function 
handle_lis2dh12_comms().

app_comms.c

modified



Thomas Hoof

Slide 15 (WiSe 2020/21)

Implementation

rd_status_t handle_lis2dh12_comms (

const ri_comm_xfer_fp_t reply_fp, 

const uint8_t * const raw_message,

size_t data_len)

This function handles the GATT/UART communication needed to control the 

functionality of acceleration logging.

reply_fp in Function pointer to reply function.

raw_message in Message received.

data_len in Length of the received message.

returns Status code of processing the message.

app_comms.c

new



Thomas Hoof

Slide 16 (WiSe 2020/21)

Implememtation

▪ Added macro APP_SENSOR_LOGGING to control compilation of 

app_accelerometer_logging.*

▪ When APP_SENSOR_LOGGING is not defined or is defined as 0 the functionality of 

logging of acceleration data is not available in the application.

app_config.h



Thomas Hoof

Slide 17 (WiSe 2020/21)

Implementation

void heartbeat (void * p_event, uint16_t event_size)

When acceleration logging is activated, than logging of environmental data is 

disabled to avoid extreme fragmentation of flash memory.

app_heartbeat.c

modified



Thomas Hoof

Slide 18 (WiSe 2020/21)

Implementation

rt_sensor_ctx_t* app_sensor_find (

const char *name)

Find sensor by it’s name. Works only with initialized sensors, will not return a 

sensor which is supported in firmware but not initialized.

This function is called by app_enable_sensor_logging() / 

app_disable_sensor_logging() to retrieve the sensor context.

name in Name of the sensor.

returns When sensor is found return it’s sensor context structure.

app_sensor.c

new



Thomas Hoof

Slide 19 (WiSe 2020/21)

Implementation

void setup (void)

Added call to app_acc_logging_init() to initialize acceleration logging 

when desired.

main.c

modified



Thomas Hoof

Slide 20 (WiSe 2020/21)

Implementation

▪ This file is not changed yet. But it contains the constants used for the message ID‘s 

in GATT/UART messages.

▪ These ID‘s are referenced in app_comms.c

▪ The ID‘s and the name of the constants must be defined by Otso Jousimaa from 

Ruuvi.

▪ The ID‘s which are used when writing this document are temporary and will be 

changed when permanent ID‘s are assigned by Ruuvi.

ruuvi_endpoint.h



Thomas Hoof

Slide 21 (WiSe 2020/21)

Implementation

rd_status_t ri_lis2dh12_acceleration_raw_get (

uint8_t * const raw_data)

This functions read raw acceleration values from the registers of LIS2DH12. It 

is called from the interrupt handler inside app_accelerometer_logging and 
from ri_lis2dh12_data_get() inside this module.

raw_data in/out Memory for storing raw accelerometer values.

returns RD_SUCCESS: When data could be retrieved from 

LIS2DH12.

RD_ERROR_INTERNAL: In case of error.

ruuvi_interface_lis2dh12.c

new



Thomas Hoof

Slide 22 (WiSe 2020/21)

Implementation

rd_status_t ri_lis2dh12_data_get (

rd_sensor_data_t * const data)

The original function ri_lis2dh12_data_get() is split into retrieving raw 

values from the sensor and parsing these data. Parsing is done by 
ri_lis2dh12_raw_data_parse().

This function is used when the acceleration logging is not active. If 

acceleration logging is active this function is replaced by 
lis2dh12_logged_data_get() inside app_accelerometer_logging.c.

data in/out Structure for storing parsed accelerometer values.

returns Status code of executing this function.

ruuvi_interface_lis2dh12.c

modified



Thomas Hoof

Slide 23 (WiSe 2020/21)

Implementation

rd_status_t ri_lis2dh12_raw_data_parse (

rd_sensor_data_t * const data, 

axis3bit16_t *raw_acceleration, 

uint8_t *raw_temperature)

This function parses raw values from the sensor and stores the values inside 
data. It is called from ri_lis2dh12_data_get() and from 

lis2dh12_logged_data_get().

data in/out Structure for storing parsed accelerometer values.

raw_accerat

ion

in Raw acceleration values.

raw_tempera

ture

in Raw temperature value. When used from 

app_accelerometer_logging.c this parameter is 

NULL. 

returns Status code of executing this function.

ruuvi_interface_lis2dh12.c

new



Thomas Hoof

Slide 24 (WiSe 2020/21)

Implementation

rd_status_t ri_set_rtc_millis(uint64_t millis)

Set system time by external source. Set RTC to zero.

millis in External time.

returns RD_SUCCESS when success.

RD_ERROR_NOT_INITIALIZED when RTC is not 

initialized.

ruuvi_nrf5_sdk_rtc_mcu.c / ruuvi_interface_rtc.h

new



Thomas Hoof

Slide 25 (WiSe 2020/21)

GATT Interface

Communication between Gateway and Sensor is done via Bluetooth Low Energy. It 

uses the Nordic UART service which itself uses the Bluetooth GATT protocol.

Three types of messages are used.

1. The Gateway sends control messages to the sensor to set or read configuration or 

start transmission of logged data.

2. The Sensor responds to control messages via response messages. This message 

type transports status information or configuration data.

3. If the Gateway requests the Sensor to send logged data, this data is sent by data 

messages. To transport all data many data messages are used in sequence. The 

end of data is signaled by a response message.

The messages are differentiated by the first byte which is noted in the table on the next 

slide in the first line.

In case of a fatal error there may be no response by the sensor.

Control messages must be padded by nullbytes to a minimum length of 11 bytes. This 

requirement is introduced by the Ruuvi firmware. The padding bytes are not shown in 

the following description of the messages.

General usage



Thomas Hoof

Slide 26 (WiSe 2020/21)

GATT Interface

Control message

0xFA 0xFA + Type

Response message

0xFB + Type

Data 

Messa

ge

0xFC
Type Message Status 

(0x00)

Time 

(0x09)

Config 

(0x07)

End of 

data

0x01 Testdata Error Succes Succes

0x03 Last Sample Error Succes Succes

0x05 Logged Data Error Succes Succes

0x06 Set Config Always

0x07 Get Config Always

0x08 Set Time Always

0x09 Get Time Always

0x0A Set Logging Always

0x0B Get Logging Always



Thomas Hoof

Slide 27 (WiSe 2020/21)

GATT Interface

A status response is used by the sensor when there are no data to return. This 

message is used as response to several control messages. 

The concrete content of a status response is as follows 0xFB 0x00 SS. 

The byte SS contains the information about the status. It must be interpreted as a 

bitfield. The bits represent the different error conditions.

See file ruuvi_driver_error.h for an explanation of the bits from the status byte.

Status response



Thomas Hoof

Slide 28 (WiSe 2020/21)

GATT Interface

This message starts transmitting 4096 byte of test data.

The purpose of this message is for testing the reliability of transporting data via 

Bluetooth under different circumstances. The transmission of the data is done via data 

messages. It is followed by an end of data message which signals the end of the data.

This message takes no parameters. It’s concrete content is: 0xFA 0xFA 0x01.

This message will be removed in a future version.

Transmit test data



Thomas Hoof

Slide 29 (WiSe 2020/21)

GATT Interface

This message starts transmitting the last sample of acceleration data. This sample 

consists of 32 tuples of (X,Y,Z) values. It is taken from RAM and transmitted to the 

gateway by using data messages. The transmission of the data is done via data 

messages. It is followed by an end of data message which signals the end of the data.

This message takes no parameters. It’s concrete content is: 0xFA 0xFA 0x03.

If acceleration logging is not active, the Sensor responds a status response containing 
error code RD_ERROR_INVALID_STATE.

Transmit last sample



Thomas Hoof

Slide 30 (WiSe 2020/21)

GATT Interface

This message starts transmitting the logged acceleration data from the ringbuffer. The 

data includes the last page which is not complete full and is not yet written to flash. The 

transmission of the data is done via data messages. It is followed by an end of data 

message which signals the end of the data. After downloading the logged data, the 

ringbuffer is empty.

This message takes no parameters. It’s concrete content is: 0xFA 0xFA 0x05.

If acceleration logging is not active, the Sensor responds a status response containing 
error code RD_ERROR_INVALID_STATE.

Transmit logged data



Thomas Hoof

Slide 31 (WiSe 2020/21)

GATT Interface

This message is returned by the sensor after returning data. It signals the end of the 
transmission. The type byte (0x01, 0x03, 0x05) maps to the type of data requested. 

This message contains nine parameters. The current configuration of the acceleration 

sensor are the first eight parameter. The structure is the same as shown in the set 

configuration message. The CRC16 value of the transmitted data is the 9th parameter.

To compute the CRC16 value the polynom 0x11021 with the initial value 0xFFFF is 

used. The output bytes are not reversed and not XOR’d. The CRC value is of size 2 

bytes. It is transferred in little-endian byte sequence.

The concrete content of this message is 
0xFB 0x03/0x05 SS P1 P2 P3 P4 P5 P6 P7 P8 CRC1 CRC2.

See “Set configuration” on next slide for description of the parameters P1 to P8. 

SS is the status code, see “Status response”.

End of data message



Thomas Hoof

Slide 32 (WiSe 2020/21)

GATT Interface

This message is used to set the configuration of the acceleration sensor (LIS2DH12). 

The message takes 8 Parameters.

It’s concrete content is: 0xFA 0xFA 0x06 P1 P2 P3 P4 P5 P6 P7 P8

Set configuration of acceleration sensor

Parameter Description

P1 Rate of sampling in samples per second. Allowed values are 

1Hz, 10Hz, 25Hz, 50Hz, 100Hz, 200Hz, 400Hz.

P2 Resolution in bits. Allowed values are 8, 10, 12.

P3 Measuring range. Allowed values are 2G, 4G, 8G, 16G.

P4 DSP function. See datasheet of LIS2DH12.

P5 DSP parameter. See datasheet of LIS2DH12.

P6 Mode of operation. Allowed values are 0xF2, 0xF3, 0xF4.

P7 Reserved. Set to 0x00.

P8 Reserved. Set to 0x00.



Thomas Hoof

Slide 33 (WiSe 2020/21)

GATT Interface

This message is used to read the configuration of the acceleration sensor (LIS2DH12). 

The message takes no parameters. The Sensor responds to this message either by a 

status response containing an error code or by a response message which transmits 

the configuration. If the status code signals an error the transmitted values are 

undefined.

The concrete content of this message is: 0xFA 0xFA 0x07.

The concrete content of the message which returns the configuration is

0xFB 0x07 SS P1 P2 P3 P4 P5 P6 P7 P8.

See “Set configuration” for description of return parameters. SS is the status code see 

“Status response” for explanation.

Read configuration



Thomas Hoof

Slide 34 (WiSe 2020/21)

GATT Interface

This message is used to set the RTC of the sensor to a timestamp which is part of the 

message. The time is expressed in milliseconds. The value must be transmitted in little-

endian byte sequence. The sensor responds to this message with a status response.

The concrete content of this message is 
0xFA 0xFA 0x08 XX XX XX XX XX XX XX XX

Set system time



Thomas Hoof

Slide 35 (WiSe 2020/21)

GATT Interface

This message is used to read the RTC of the sensor. The sensor responds to this 

message with a timestamp response. If the status code signals an error the transmitted 

value is undefined.

The concrete content of this message is 0xFA 0xFA 0x09.

The concrete content of a timestamp response is the following
0xFB 0x08 SS XX XX XX XX XX XX XX XX. Where SS is the status code.

The timestamp value is transmitted in little-endian byte sequence.

Get system time



Thomas Hoof

Slide 36 (WiSe 2020/21)

GATT Interface

This message is used to activate or deactivate acceleration logging. It takes one 

parameter. The parameter is interpreted as a Boolean value. If it maps to true, 

acceleration logging is activated. If it maps to false, acceleration logging is deactivated. 

The sensor responds to this message using a status response. Activating acceleration 

logging when it is already active results in an error. Deactivating acceleration logging 

when it is not active results in an error.

The concrete content of this message is 0xFA 0xFA 0x0A XX. 

Where XX can be 0x00 or 0x01.

Activate/Deactivate logging



Thomas Hoof

Slide 37 (WiSe 2020/21)

GATT Interface

This message is used to query the status of acceleration logging. The sensor responds 

to this message with a status response. If logging is active, the response contains the 
status RD_SUCCESS if logging is not active the status is 

RD_ERROR_NOT_INITIALIZED.

The concrete content of this message is 0xFA 0xFA 0x0B.

Query state of logging



Thomas Hoof

Slide 38 (WiSe 2020/21)

GATT Interface
Communication example


