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Task 1
The idea of exponential smoothing is illustrated by equation 1 which has been extracted from Hyndman and
Athanasopoulos (2021) (subsection 8.1).

ŷT +1|T = αyT + α(1 − α)yT −1 + α(1 − α)2yT −2 + ... (1)

Based on equation 1 answer the following questions and do the following:

a) Which factors embody the weights of exponential smoothing?

b) What is the meaning of α?

c) Write a function that computes the weights (see task 1.a)) for the last T observations dependent on α.
Choose T = 20 and different values for α: α1 = 0.2, α2 = 0.4, α3 = 0.6 and α4 = 0.8 and plot the
resulting values (curves) in one plot. Add a legend.

d) What can you see in your created plot from task 1.c)?

Task 2
a) Write down the forecast equation ŷT +h|T of

a.1) Holt’s linear trend method and

a.2) Holt’s linear trend method with a damping parameter 0 < ϕ < 1.

b) Based on the two forecast equations from task 2.a) produce forecasts for the next h = 50 time points:
Assume that lT = 25, bT = 0.33 and ϕ = 0.88. Implement a smart and short solution since the way of
your implementation will also be graded!
Plot your forecasts based on the two methods in one plot.

b.1) Describe and compare the produced forecasts based on the two forecast equations.

b.2) What happens when you increase the value of ϕ? Illustrate it by choosing at least three different
values for ϕ.

Task 3
a) Write down the equations of the Holt-Winters’ additive method (including the forecast equation).

b) What does the index of the seasonal component t + h − m(k + 1) in the context of computing the

b.1) fitted values ŷt+h|t and
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b.2) forecasts ŷT +h|T

indicate?

c) After applying the Holt-Winters’ additive method to the Australian domestic tourism data, the following
values are obtained based on α = 0.2620, β∗ = 0.1646 and γ = 0.0001 (see subsection 8.3 in Hyndman
and Athanasopoulos (2021) for complete information):

Table 1: Resulting values after applying the Holt-Winters’ additive method to the Australian domestic
tourism data from Hyndman and Athanasopoulos (2021).

Quarter Time Observation Level Slope Season Forecast
t yt lt bt st ŷt+1|t

1997 Q1 0 1.5
1997 Q2 1 -0.3
1997 Q3 2 -0.7
1997 Q4 3 9.8 0.0 -0.5
1998 Q1 4 11.8 9.9 0.0 1.5 11.3
1998 Q2 5 9.3 9.9 0.0 -0.3 9.7
1998 Q3 6 8.6 9.7 -0.0 -0.7 9.2
1998 Q4 7 9.3 9.8 0.0 -0.5 9.2

... ... ... ... ... ...
2017 Q1 80 12.4 10.9 0.1 1.5 12.3
2017 Q2 81 10.5 10.9 0.1 -0.3 10.7
2017 Q3 82 10.5 11.0 0.1 -0.7 10.3
2017 Q4 83 11.2 11.3 0.1 -0.5 10.6

h ŷT +h|T
2018 Q1 1 12.9
2018 Q2 2 11.2
2018 Q3 3 11.0
2018 Q4 4 11.2
2019 Q1 5 13.4

Understand how the values in table 1 have been computed. Calculate the first four fitted values by hand
and show how the corresponding level, trend and seasonal component have been calculated. How can you
reproduce the forecasts for h = 1, ..., 5? Calculate them also by hand.

Task 4
Why is it not possible to generate point forecasts and prediction intervals based on exponential smoothing
methods? Why are statistical models needed? Explain it in your own words!

Task 5
a) How does the Holt’s linear trend method look like? Write down its equations (including the forecast

equation).

b) Show that the Holt’s linear trend method with additive errors results in the following ETS(A,A,N)
model:

yt = lt−1 + bt−1 + ϵt

lt = lt−1 + bt−1 + αϵt

bt = bt−1 + βϵt
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with β = αβ∗.
Write down all your intermediate steps and name the different steps! Hint: Consider how the
ETS(A,N,N) model has been constructed based on simple exponential smoothing with additive errors
in subsection 8.5 in Hyndman and Athanasopoulos (2021).

Task 6
a) Write your own function to implement Holt’s linear trend method (see Task 5.a)) and to make forecasts.

The function should take the following arguments:

• y (the time series),

• alpha (the smoothing parameter α),

• beta (the smoothing parameter β∗),

• level (the initial level l0),

• trend (the initial trend b0) and

• h (the number of forecasts)

and it should return the following computed values:

• level_comp (the level component lt),

• trend_comp (the trend component bt (slope)),

• y_fitted (the fitted values (forecasts) ŷt+1|t) and

• y_h (the true forecasts ŷT +h|T ).

b) Apply your function from task 6.a) to the following Australian population data (see code chunk below)
which is based on the data set tsibbledata::global_economy (O’Hara-Wild et al. 2022) and which
has been extracted from Hyndman and Athanasopoulos (2021) (subsection 8.2).
Your function should return the forecasts for the next ten observations. Does it give the same forecasts
as the defined ETS model (based on fable::ETS() (O’Hara-Wild, Hyndman, and Wang 2021)) in the
code chunk below?
As initial values for α, l0 and b0 take the ones which are returned by applying the predefined ETS-model
(see below) to aus_economy. Which value do have to take for β∗ and why? Round the initial values to
four decimal places.

Visualize the time series aus_economy, the return values of your function (ŷt+1|t and ŷT +h|T ) and the
corresponding values which result from applying ETS() in one plot. Do you expect differences between
the return values of your function and the ones resulting from ETS()? If yes, which ones?
aus_economy <- global_economy %>%
filter(Code == "AUS") %>%
mutate(Pop = Population / 1e6)

fit <- aus_economy %>%
model(

AAN = ETS(Pop ~ error("A") + trend("A") + season("N"))
)
fc <- fit %>% forecast(h = 10)

Task 7
Consider the number of pigs slaughtered in New South Wales named pigs from tsibbledata::aus_livestock
(O’Hara-Wild et al. 2022) (see code chunk below).
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The data set pigs has been splitted in a training set of 486 observations and a test set of 72 observations
(6 years):
pigs <- aus_livestock %>% dplyr::filter(State == "New South Wales", Animal == "Pigs")
train_pigs <- pigs[1:486,] # training set of the first 486 observations
test_pigs <- pigs[487:nrow(pigs),] # test set of 72 observations

a) Visualize the time series pigs and describe it. Do you recognize a trend at the most current observations?

b) Apply an ETS model with additive errors, an additive trend and no seasonality to pigs, produce
forecasts based on the training set for the test set. Visualize the time series pigs and your fitted values
and forecasts (with prediction intervals of 80 % and 95 % coverage probability) in one plot.

c) Why is the defined ETS model in task 7.b) not the best one?

d) Which ETS model is best and why? Give an explanation and plot pigs and your fitted values and
forecasts based on the chosen ETS model in one plot.

e) Check out the residuals of your chosen ETS-model from task 7.d) by plotting a time series, a histogram
and an acf plot of the residuals! Describe what you can see in the single plots and interpret them.
Then, compare these plots with the following ones that were obtained after applying the drift method
to train_pigs:
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f) Compute the RMSE, MAE, MAPE and MASE after producing forecasts for the test set based on your
chosen ETS model from task 7.d). Then, compare these accuracy measures with the following ones
that were obtained after applying the drift method to pigs. What can you conclude from it?

## # A tibble: 1 x 5
## .model RMSE MAE MAPE MASE
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Drift 8091. 6967. 10.1 0.657
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