
Predictive Analytics

Ch3. Time series decomposition

Prof. Dr. Benjamin Buchwitz

Outline

1 Transformations and adjustments

2 Time series components

3 History of time series decomposition

4 STL decomposition

5 When things go wrong

2

Per capita adjustments

global_economy %>%
filter(Country == "Australia") %>%
autoplot(GDP)

0.0e+00

5.0e+11

1.0e+12

1.5e+12

1960 1980 2000
Year [1Y]

G
D

P

3

Per capita adjustments

global_economy %>%
filter(Country == "Australia") %>%
autoplot(GDP / Population)

0

20000

40000

60000

1960 1980 2000
Year [1Y]

G
D

P
/P

op
ul

at
io

n

4

Inflation adjustments

print_retail <- aus_retail %>%
filter(Industry == "Newspaper and book retailing") %>%
group_by(Industry) %>%
index_by(Year = year(Month)) %>%
summarise(Turnover = sum(Turnover))

aus_economy <- global_economy %>%
filter(Code == "AUS")

print_retail %>%
left_join(aus_economy, by = "Year") %>%
mutate(Adjusted_turnover = Turnover / CPI * 100) %>%
pivot_longer(c(Turnover, Adjusted_turnover), values_to = "Turnover") %>%
mutate(name = factor(name, levels=c("Turnover","Adjusted_turnover"))) %>%
ggplot(aes(x = Year, y = Turnover)) +
geom_line() +
facet_grid(name ~ ., scales = "free_y") +
labs(title = "Turnover: Australian print media industry", y = "$AU")

5

Inflation adjustments

Turnover
A

djusted_turnover

1990 2000 2010

2000

3000

4000

3000

3500

4000

4500

5000

Year

$A
U

Turnover: Australian print media industry

6

Mathematical transformations

If the data show different variation at different levels of the series, then a
transformation can be useful.

Denote original observations as y1, . . . , yT and transformed observations as
w1, . . . ,wT.
Mathematical transformations for stabilizing variation

Square root wt =
√
yt ↓

Cube root wt = 3
√
yt Increasing

Logarithm wt = log(yt) strength

Logarithms, in particular, are useful because they are more interpretable:
changes in a log value are relative (percent) changes on the original scale.

7

Mathematical transformations

If the data show different variation at different levels of the series, then a
transformation can be useful.

Denote original observations as y1, . . . , yT and transformed observations as
w1, . . . ,wT.

Mathematical transformations for stabilizing variation

Square root wt =
√
yt ↓

Cube root wt = 3
√
yt Increasing

Logarithm wt = log(yt) strength

Logarithms, in particular, are useful because they are more interpretable:
changes in a log value are relative (percent) changes on the original scale.

7

Mathematical transformations

If the data show different variation at different levels of the series, then a
transformation can be useful.

Denote original observations as y1, . . . , yT and transformed observations as
w1, . . . ,wT.
Mathematical transformations for stabilizing variation

Square root wt =
√
yt ↓

Cube root wt = 3
√
yt Increasing

Logarithm wt = log(yt) strength

Logarithms, in particular, are useful because they are more interpretable:
changes in a log value are relative (percent) changes on the original scale.

7

Mathematical transformations

If the data show different variation at different levels of the series, then a
transformation can be useful.

Denote original observations as y1, . . . , yT and transformed observations as
w1, . . . ,wT.
Mathematical transformations for stabilizing variation

Square root wt =
√
yt ↓

Cube root wt = 3
√
yt Increasing

Logarithm wt = log(yt) strength

Logarithms, in particular, are useful because they are more interpretable:
changes in a log value are relative (percent) changes on the original scale.

7

Mathematical transformations

food <- aus_retail %>%
filter(Industry == "Food retailing") %>%
summarise(Turnover = sum(Turnover))

5000

10000

1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month [1M]

Tu
rn

ov
er

 (
$A

U
D

)

8

Mathematical transformations

food %>% autoplot(sqrt(Turnover)) +
labs(y = "Square root turnover")

50

75

100

1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month [1M]

S
qu

ar
e

ro
ot

 tu
rn

ov
er

9

Mathematical transformations

food %>% autoplot(Turnoverˆ(1/3)) +
labs(y = "Cube root turnover")

10

15

20

1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month [1M]

C
ub

e
ro

ot
 tu

rn
ov

er

10

Mathematical transformations

food %>% autoplot(log(Turnover)) +
labs(y = "Log turnover")

7.0

7.5

8.0

8.5

9.0

9.5

1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month [1M]

Lo
g

tu
rn

ov
er

11

Mathematical transformations

food %>% autoplot(-1/Turnover) +
labs(y = "Inverse turnover")

−0.00075

−0.00050

−0.00025

1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month [1M]

In
ve

rs
e

tu
rn

ov
er

12

Box-Cox transformations

Each of these transformations is close to a member of the family of Box-Cox transformations:

wt =

{
log(yt), λ = 0;
(sign(yt)|yt|λ − 1)/λ, λ ̸= 0.

Actually the Bickel-Doksum transformation (allowing for yt < 0)
λ = 1: (No substantive transformation)
λ = 1

2 : (Square root plus linear transformation)
λ = 0: (Natural logarithm)
λ = −1: (Inverse plus 1)

13

Box-Cox transformations

Each of these transformations is close to a member of the family of Box-Cox transformations:

wt =

{
log(yt), λ = 0;
(sign(yt)|yt|λ − 1)/λ, λ ̸= 0.

Actually the Bickel-Doksum transformation (allowing for yt < 0)
λ = 1: (No substantive transformation)
λ = 1

2 : (Square root plus linear transformation)
λ = 0: (Natural logarithm)
λ = −1: (Inverse plus 1)

13

Box-Cox transformations

14

Box-Cox transformations

food %>%
features(Turnover, features = guerrero)

A tibble: 1 x 1
lambda_guerrero
<dbl>
1 0.0524

This attempts to balance the seasonal fluctuations and random variation
across the series.
Always check the results.
A low value of λ can give extremely large prediction intervals.

15

Box-Cox transformations

food %>%
features(Turnover, features = guerrero)

A tibble: 1 x 1
lambda_guerrero
<dbl>
1 0.0524

This attempts to balance the seasonal fluctuations and random variation
across the series.
Always check the results.
A low value of λ can give extremely large prediction intervals.

15

Box-Cox transformations

food %>% autoplot(box_cox(Turnover, 0.0524)) +
labs(y = "Box-Cox transformed turnover")

9

10

11

12

1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month [1M]

B
ox

−
C

ox
 tr

an
sf

or
m

ed
 tu

rn
ov

er

16

Transformations

Often no transformation needed.
Simple transformations are easier to explain and work well enough.
Transformations can have very large effect on PI.
If some data are zero or negative, then use λ > 0.
log1p() can also be useful for data with zeros.
Choosing logs is a simple way to force forecasts to be positive
Transformations must be reversed to obtain forecasts on the original scale.
(Handled automatically by fable.)

17

Outline

1 Transformations and adjustments

2 Time series components

3 History of time series decomposition

4 STL decomposition

5 When things go wrong

18

Time series patterns

Recall

Trend pattern exists when there is a long-term increase or decrease in the data.
Cyclic pattern exists when data exhibit rises and falls that are not of fixed period (duration

usually of at least 2 years).
Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the

year, the month, or day of the week).

19

Time series decomposition

yt = f(St, Tt, Rt)

where yt = data at period t
Tt = trend-cycle component at period t
St = seasonal component at period t
Rt = remainder component at period t

Additive decomposition: yt = St + Tt + Rt.

Multiplicative decomposition: yt = St × Tt × Rt.

20

Time series decomposition

yt = f(St, Tt, Rt)

where yt = data at period t
Tt = trend-cycle component at period t
St = seasonal component at period t
Rt = remainder component at period t

Additive decomposition: yt = St + Tt + Rt.

Multiplicative decomposition: yt = St × Tt × Rt.

20

Time series decomposition

Additive model appropriate if magnitude of seasonal fluctuations does not
vary with level.
If seasonal are proportional to level of series, then multiplicative model
appropriate.
Multiplicative decomposition more prevalent with economic series
Alternative: use a Box-Cox transformation, and then use additive
decomposition.
Logs turn multiplicative relationship into an additive relationship:

yt = St × Tt × Rt ⇒ log yt = log St + log Tt + log Rt.

21

US Retail Employment

us_retail_employment <- us_employment %>%
filter(year(Month) >= 1990, Title == "Retail Trade") %>%
select(-Series_ID)

us_retail_employment

A tsibble: 357 x 3 [1M]
Month Title Employed
<mth> <chr> <dbl>
1 1990 Jan Retail Trade 13256.
2 1990 Feb Retail Trade 12966.
3 1990 Mär Retail Trade 12938.
4 1990 Apr Retail Trade 13012.
5 1990 Mai Retail Trade 13108.
6 1990 Jun Retail Trade 13183.
7 1990 Jul Retail Trade 13170.
8 1990 Aug Retail Trade 13160.
9 1990 Sep Retail Trade 13113.
10 1990 Okt Retail Trade 13185.
... with 347 more rows

22

US Retail Employment

us_retail_employment %>%
autoplot(Employed) +
labs(y="Persons (thousands)", title="Total employment in US retail")

13000

14000

15000

16000

1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month [1M]

P
er

so
ns

 (
th

ou
sa

nd
s)

Total employment in US retail

23

US Retail Employment

us_retail_employment %>%
model(stl = STL(Employed))

A mable: 1 x 1
stl
<model>
1 <STL>

24

US Retail Employment

dcmp <- us_retail_employment %>%
model(stl = STL(Employed))

components(dcmp)

A dable: 357 x 7 [1M]
Key: .model [1]
: Employed = trend + season_year + remainder
.model Month Employed trend season_year remainder season_adjust
<chr> <mth> <dbl> <dbl> <dbl> <dbl> <dbl>
1 stl 1990 Jan 13256. 13288. -33.0 0.836 13289.
2 stl 1990 Feb 12966. 13269. -258. -44.6 13224.
3 stl 1990 Mär 12938. 13250. -290. -22.1 13228.
4 stl 1990 Apr 13012. 13231. -220. 1.05 13232.
5 stl 1990 Mai 13108. 13211. -114. 11.3 13223.
6 stl 1990 Jun 13183. 13192. -24.3 15.5 13207.
7 stl 1990 Jul 13170. 13172. -23.2 21.6 13193.
8 stl 1990 Aug 13160. 13151. -9.52 17.8 13169.
9 stl 1990 Sep 13113. 13131. -39.5 22.0 13153.
10 stl 1990 Okt 13185. 13110. 61.6 13.2 13124.
... with 347 more rows

25

US Retail Employment

us_retail_employment %>%
autoplot(Employed, color='gray') +
autolayer(components(dcmp), trend, color='#D55E00') +
labs(y="Persons (thousands)", title="Total employment in US retail")

13000

14000

15000

16000

1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month [1M]

P
er

so
ns

 (
th

ou
sa

nd
s)

Total employment in US retail

26

US Retail Employment

components(dcmp) %>% autoplot()

E
m

ployed
trend

season_year
rem

ainder

1990 Jan 2000 Jan 2010 Jan 2020 Jan

13000

14000

15000

16000

13000

14000

15000

16000

−250

0

250

500

−100

−50

0

50

100

Month

Employed = trend + season_year + remainder

STL decomposition

27

US Retail Employment

components(dcmp) %>% gg_subseries(season_year)

Jan Feb Mär Apr Mai Jun Jul Aug Sep Okt Nov Dez

stl

19
90

20
00

20
10

20
20

19
90

20
00

20
10

20
20

19
90

20
00

20
10

20
20

19
90

20
00

20
10

20
20

19
90

20
00

20
10

20
20

19
90

20
00

20
10

20
20

19
90

20
00

20
10

20
20

19
90

20
00

20
10

20
20

19
90

20
00

20
10

20
20

19
90

20
00

20
10

20
20

19
90

20
00

20
10

20
20

19
90

20
00

20
10

20
20

−250

0

250

500

Month

se
as

on
_y

ea
r

28

Seasonal adjustment

Useful by-product of decomposition: an easy way to calculate seasonally adjusted data.
Additive decomposition: seasonally adjusted data given by

yt − St = Tt + Rt

Multiplicative decomposition: seasonally adjusted data given by
yt/St = Tt × Rt

29

US Retail Employment

us_retail_employment %>%
autoplot(Employed, color='gray') +
autolayer(components(dcmp), season_adjust, color='#0072B2') +
labs(y="Persons (thousands)", title="Total employment in US retail")

13000

14000

15000

16000

1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month [1M]

P
er

so
ns

 (
th

ou
sa

nd
s)

Total employment in US retail

30

Seasonal adjustment

We use estimates of S based on past values to seasonally adjust a current value.
Seasonally adjusted series reflect remainders as well as trend. Therefore they are not “smooth”
and “downturns” or “upturns” can be misleading.
It is better to use the trend-cycle component to look for turning points.

31

Outline

1 Transformations and adjustments

2 Time series components

3 History of time series decomposition

4 STL decomposition

5 When things go wrong

32

History of time series decomposition

Classical method originated in 1920s.
Census II method introduced in 1957. Basis for X-11 method and variants
(including X-12-ARIMA, X-13-ARIMA)
STL method introduced in 1983
TRAMO/SEATS introduced in 1990s.

National Statistics Offices

ABS uses X-12-ARIMA
US Census Bureau uses X-13ARIMA-SEATS
Statistics Canada uses X-12-ARIMA
ONS (UK) uses X-12-ARIMA
EuroStat use X-13ARIMA-SEATS

33

History of time series decomposition

Classical method originated in 1920s.
Census II method introduced in 1957. Basis for X-11 method and variants
(including X-12-ARIMA, X-13-ARIMA)
STL method introduced in 1983
TRAMO/SEATS introduced in 1990s.

National Statistics Offices

ABS uses X-12-ARIMA
US Census Bureau uses X-13ARIMA-SEATS
Statistics Canada uses X-12-ARIMA
ONS (UK) uses X-12-ARIMA
EuroStat use X-13ARIMA-SEATS

33

X-11 decomposition

Advantages

Relatively robust to outliers
Completely automated choices for trend and seasonal changes
Very widely tested on economic data over a long period of time.

Disadvantages

No prediction/confidence intervals
Ad hoc method with no underlying model
Only developed for quarterly and monthly data

34

X-11 decomposition

Advantages

Relatively robust to outliers
Completely automated choices for trend and seasonal changes
Very widely tested on economic data over a long period of time.

Disadvantages

No prediction/confidence intervals
Ad hoc method with no underlying model
Only developed for quarterly and monthly data

34

Extensions: X-12-ARIMA and X-13-ARIMA

The X-11, X-12-ARIMA and X-13-ARIMA methods are based on Census II decomposition.
These allow adjustments for trading days and other explanatory variables.
Known outliers can be omitted.
Level shifts and ramp effects can be modelled.
Missing values estimated and replaced.
Holiday factors (e.g., Easter, Labour Day) can be estimated.

35

X-13ARIMA-SEATS

Advantages

Model-based
Smooth trend estimate
Allows estimates at end points
Allows changing seasonality
Developed for economic data

Disadvantages

Only developed for quarterly and monthly data

36

X-13ARIMA-SEATS

Advantages

Model-based
Smooth trend estimate
Allows estimates at end points
Allows changing seasonality
Developed for economic data

Disadvantages

Only developed for quarterly and monthly data

36

Outline

1 Transformations and adjustments

2 Time series components

3 History of time series decomposition

4 STL decomposition

5 When things go wrong

37

STL decomposition

STL: “Seasonal and Trend decomposition using Loess”
Very versatile and robust.
Unlike X-12-ARIMA, STL will handle any type of seasonality.
Seasonal component allowed to change over time, and rate of change
controlled by user.
Smoothness of trend-cycle also controlled by user.
Robust to outliers
Not trading day or calendar adjustments.
Only additive.
Take logs to get multiplicative decomposition.
Use Box-Cox transformations to get other decompositions.

38

STL decomposition

us_retail_employment %>%
model(STL(Employed ~ season(window=9), robust=TRUE)) %>%
components() %>% autoplot() +
labs(title = "STL decomposition: US retail employment")

E
m

ployed
trend

season_yearrem
ainder

1990 Jan 2000 Jan 2010 Jan 2020 Jan

13000
14000
15000
16000

13000
14000
15000
16000

−250
0

250
500

−100
0

100

Month

Employed = trend + season_year + remainder

STL decomposition: US retail employment

39

STL decomposition

40

STL decomposition

us_retail_employment %>%
model(STL(Employed ~ season(window=5))) %>%
components()

us_retail_employment %>%
model(STL(Employed ~ trend(window=15) +

season(window="periodic"),
robust = TRUE)

) %>% components()

trend(window = ?) controls wiggliness of trend component.
season(window = ?) controls variation on seasonal component.
season(window = 'periodic') is equivalent to an infinite window.

41

STL decomposition

us_retail_employment %>%
model(STL(Employed)) %>%
components() %>% autoplot()

E
m

ployed
trend

season_yearrem
ainder

1990 Jan 2000 Jan 2010 Jan 2020 Jan

13000
14000
15000
16000

13000
14000
15000
16000

−250
0

250
500

−100
−50

0
50

100

Month

Employed = trend + season_year + remainder

STL decomposition

42

STL decomposition

us_retail_employment %>%
model(STL(Employed)) %>%
components() %>% autoplot()

E
m

ployed
trend

season_yearrem
ainder

1990 Jan 2000 Jan 2010 Jan 2020 Jan

13000
14000
15000
16000

13000
14000
15000
16000

−250
0

250
500

−100
−50

0
50

100

Month

Employed = trend + season_year + remainder

STL decomposition

42

STL() chooses season(window=13) by
default
Can include transformations.

STL decomposition

Algorithm that updates trend and seasonal components iteratively.
Starts with T̂t = 0
Uses a mixture of loess and moving averages to successively refine the trend
and seasonal estimates.
The trend window controls loess bandwidth applied to deasonalised values.
The season window controls loess bandwidth applied to detrended
subseries.
Robustness weights based on remainder.
Default season window = 13
Default trend window = nextodd(

ceiling((1.5*period)/(1-(1.5/s.window)))

43

Outline

1 Transformations and adjustments

2 Time series components

3 History of time series decomposition

4 STL decomposition

5 When things go wrong

44

The ABS stuff-up

45

The ABS stuff-up

46

The ABS stuff-up

47

The ABS stuff-up

employed

A tsibble: 440 x 4 [1M]
Time Month Year Employed
<mth> <ord> <dbl> <dbl>
1 1978 Feb Feb 1978 5986.
2 1978 Mär Mär 1978 6041.
3 1978 Apr Apr 1978 6054.
4 1978 Mai Mai 1978 6038.
5 1978 Jun Jun 1978 6031.
6 1978 Jul Jul 1978 6036.
7 1978 Aug Aug 1978 6005.
8 1978 Sep Sep 1978 6024.
9 1978 Okt Okt 1978 6046.
10 1978 Nov Nov 1978 6034.
... with 430 more rows 48

The ABS stuff-up

employed %>%
autoplot(Employed) +
labs(title = "Total employed", y = "Thousands")

6000

8000

10000

1980 Jan 1990 Jan 2000 Jan 2010 Jan
Time [1M]

T
ho

us
an

ds

Total employed

49

The ABS stuff-up

employed %>%
filter(Year >= 2005) %>%
autoplot(Employed) +
labs(title = "Total employed", y = "Thousands")

10000

10500

11000

11500

2006 Jan 2008 Jan 2010 Jan 2012 Jan 2014 Jan
Time [1M]

T
ho

us
an

ds

Total employed

50

The ABS stuff-up

employed %>%
filter(Year >= 2005) %>%
gg_season(Employed) +
labs(title = "Total employed", y = "Thousands")

10000

10500

11000

11500

Jan Feb Mär Apr Mai Jun Jul Aug Sep Okt Nov Dez
Time

T
ho

us
an

ds

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

Total employed

51

The ABS stuff-up

employed %>%
mutate(diff = difference(Employed)) %>%
filter(Month == "Sep") %>%
ggplot(aes(y = diff, x = 1)) +
geom_boxplot() + coord_flip() +
labs(title = "Sep - Aug: total employed", y = "Thousands") +
scale_x_continuous(breaks = NULL, labels = NULL)

0 50 100 150 200
Thousands

x

Sep − Aug: total employed

52

The ABS stuff-up

dcmp <- employed %>%
filter(Year >= 2005) %>%
model(stl = STL(Employed ~ season(window = 11), robust = TRUE))

components(dcmp) %>% autoplot()

E
m

ployed
trend

season_yearrem
ainder

2006 Jan 2008 Jan 2010 Jan 2012 Jan 2014 Jan

10000
10500
11000
11500

10000
10500
11000
11500

−100
−50

0
50

100

−100
−50

0
50

100

Time

Employed = trend + season_year + remainder

STL decomposition

53

The ABS stuff-up

components(dcmp) %>%
filter(year(Time) == 2013) %>%
gg_season(season_year) +
labs(title = "Seasonal component") + guides(colour = "none")

−100

−50

0

50

100

Jan Feb Mär Apr Mai Jun Jul Aug Sep Okt Nov Dez
Time

se
as

on
_y

ea
r

Seasonal component

54

The ABS stuff-up

components(dcmp) %>%
as_tsibble() %>%
autoplot(season_adjust)

10000

10500

11000

11500

2006 Jan 2008 Jan 2010 Jan 2012 Jan 2014 Jan
Time [1M]

se
as

on
_a

dj
us

t

55

The ABS stuff-up

August 2014 employment numbers higher than expected.
Supplementary survey usually conducted in August for employed people.
Most likely, some employed people were claiming to be unemployed in
August to avoid supplementary questions.
Supplementary survey not run in 2014, so no motivation to lie about
employment.
In previous years, seasonal adjustment fixed the problem.
The ABS has now adopted a new method to avoid the bias.

56

	Transformations and adjustments
	Time series components
	History of time series decomposition
	STL decomposition
	When things go wrong

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

