
Predictive Analytics

Ch5. The forecasters’ toolbox

Prof. Dr. Benjamin Buchwitz

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 Residual diagnostics

4 Distributional forecasts and prediction intervals

5 Forecasting with transformations

6 Forecasting and decomposition

7 Evaluating forecast accuracy

2

A tidy forecasting workflow

The process of producing forecasts can be split up into a few fundamental steps.

1 Preparing data
2 Data visualisation
3 Specifying a model
4 Model estimation
5 Accuracy & performance evaluation
6 Producing forecasts

3

A tidy forecasting workflow

Tidy Visualise

Specify

Estimate

Evaluate

Forecast

4

Data preparation (tidy)

gdppc <- global_economy %>%
mutate(GDP_per_capita = GDP/Population) %>%
select(Year, Country, GDP, Population, GDP_per_capita)

gdppc

A tsibble: 15,150 x 5 [1Y]

Key: Country [263]

Year Country GDP Population GDP_per_capita

<dbl> <fct> <dbl> <dbl> <dbl>

1 1960 Afghanistan 537777811. 8996351 59.8

2 1961 Afghanistan 548888896. 9166764 59.9

3 1962 Afghanistan 546666678. 9345868 58.5

4 1963 Afghanistan 751111191. 9533954 78.8

5 1964 Afghanistan 800000044. 9731361 82.2

6 1965 Afghanistan 1006666638. 9938414 101.

7 1966 Afghanistan 1399999967. 10152331 138.

8 1967 Afghanistan 1673333418. 10372630 161.

9 1968 Afghanistan 1373333367. 10604346 130.

10 1969 Afghanistan 1408888922. 10854428 130.

... with 15,140 more rows

5

Data visualisation

gdppc %>%
filter(Country=="Sweden") %>%
autoplot(GDP_per_capita) +
labs(title = "GDP per capita for Sweden", y = "$US")

0

20000

40000

60000

1960 1980 2000
Year [1Y]

$U
S

GDP per capita for Sweden

6

Model estimation

The model() function trains models to data.

fit <- gdppc %>%
model(trend_model = TSLM(GDP_per_capita ~ trend()))

fit

A mable: 263 x 2

Key: Country [263]

Country trend_model

<fct> <model>

1 Afghanistan <TSLM>

2 Albania <TSLM>

3 Algeria <TSLM>

4 American Samoa <TSLM>

5 Andorra <TSLM>

6 Angola <TSLM>

7 Antigua and Barbuda <TSLM>

8 Arab World <TSLM>

9 Argentina <TSLM>

10 Armenia <TSLM>

... with 253 more rows

7

Model estimation

The model() function trains models to data.

fit <- gdppc %>%
model(trend_model = TSLM(GDP_per_capita ~ trend()))

fit

A mable: 263 x 2

Key: Country [263]

Country trend_model

<fct> <model>

1 Afghanistan <TSLM>

2 Albania <TSLM>

3 Algeria <TSLM>

4 American Samoa <TSLM>

5 Andorra <TSLM>

6 Angola <TSLM>

7 Antigua and Barbuda <TSLM>

8 Arab World <TSLM>

9 Argentina <TSLM>

10 Armenia <TSLM>

... with 253 more rows

7

A mable is a model table, each cell
corresponds to a fitted model.

Producing forecasts

fit %>% forecast(h = "3 years")

A fable: 789 x 5 [1Y]

Key: Country, .model [263]

Country .model Year GDP_per_capita .mean

<fct> <chr> <dbl> <dist> <dbl>

1 Afghanistan trend_model 2018 N(526, 9653) 526.

2 Afghanistan trend_model 2019 N(534, 9689) 534.

3 Afghanistan trend_model 2020 N(542, 9727) 542.

4 Albania trend_model 2018 N(4716, 476419) 4716.

5 Albania trend_model 2019 N(4867, 481086) 4867.

6 Albania trend_model 2020 N(5018, 486012) 5018.

7 Algeria trend_model 2018 N(4410, 643094) 4410.

8 Algeria trend_model 2019 N(4489, 645311) 4489.

9 Algeria trend_model 2020 N(4568, 647602) 4568.

10 American Samoa trend_model 2018 N(12491, 652926) 12491.

... with 779 more rows

8

Producing forecasts

fit %>% forecast(h = "3 years")

A fable: 789 x 5 [1Y]

Key: Country, .model [263]

Country .model Year GDP_per_capita .mean

<fct> <chr> <dbl> <dist> <dbl>

1 Afghanistan trend_model 2018 N(526, 9653) 526.

2 Afghanistan trend_model 2019 N(534, 9689) 534.

3 Afghanistan trend_model 2020 N(542, 9727) 542.

4 Albania trend_model 2018 N(4716, 476419) 4716.

5 Albania trend_model 2019 N(4867, 481086) 4867.

6 Albania trend_model 2020 N(5018, 486012) 5018.

7 Algeria trend_model 2018 N(4410, 643094) 4410.

8 Algeria trend_model 2019 N(4489, 645311) 4489.

9 Algeria trend_model 2020 N(4568, 647602) 4568.

10 American Samoa trend_model 2018 N(12491, 652926) 12491.

... with 779 more rows

8

A fable is a forecast table with
point forecasts and distributions.

Visualising forecasts

fit %>% forecast(h = "3 years") %>%
filter(Country=="Sweden") %>%
autoplot(gdppc) +
labs(title = "GDP per capita for Sweden", y = "$US")

0

20000

40000

60000

1960 1980 2000 2020
Year

$U
S

level

80

95

GDP per capita for Sweden

9

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 Residual diagnostics

4 Distributional forecasts and prediction intervals

5 Forecasting with transformations

6 Forecasting and decomposition

7 Evaluating forecast accuracy

10

Some simple forecasting methods

MEAN(y): Average method

Forecast of all future values is equal to mean of historical data {y1, . . . , yT}.
Forecasts: ŷT+h|T = ȳ = (y1 + · · · + yT)/T

200

300

400

500

600

1960 Q1 1980 Q1 2000 Q1
Quarter

B
ric

ks

Clay brick production in Australia

11

Some simple forecasting methods

NAIVE(y): Naïve method

Forecasts equal to last observed value.
Forecasts: ŷT+h|T = yT.
Consequence of efficient market hypothesis.

300

350

400

450

500

1995 Q1 2000 Q1 2005 Q1 2010 Q1
Quarter

B
ric

ks

Clay brick production in Australia

12

Some simple forecasting methods

SNAIVE(y ~ lag(m)): Seasonal naïve method

Forecasts equal to last value from same season.
Forecasts: ŷT+h|T = yT+h−m(k+1), wherem = seasonal period and k is the
integer part of (h − 1)/m.

300

350

400

450

500

1995 Q1 2000 Q1 2005 Q1 2010 Q1
Quarter

B
ric

ks

Clay brick production in Australia

13

Some simple forecasting methods

RW(y ~ drift()): Drift method

Forecasts equal to last value plus average change.
Forecasts:

ŷT+h|T = yT +
h

T − 1

T∑
t=2

(yt − yt−1)

= yT +
h

T − 1
(yT − y1).

Equivalent to extrapolating a line drawn between first and last observations.

14

Some simple forecasting methods

Drift method

200

300

400

500

600

1960 Q1 1980 Q1 2000 Q1
Quarter

B
ric

ks

Clay brick production in Australia

15

Model fitting

The model() function trains models to data.

brick_fit <- aus_production %>%
filter(!is.na(Bricks)) %>%
model(
Seasonal_naive = SNAIVE(Bricks),
Naive = NAIVE(Bricks),
Drift = RW(Bricks ~ drift()),
Mean = MEAN(Bricks)

)

A mable: 1 x 4

Seasonal_naive Naive Drift Mean

<model> <model> <model> <model>

1 <SNAIVE> <NAIVE> <RW w/ drift> <MEAN>

16

Producing forecasts

brick_fc <- brick_fit %>%
forecast(h = "5 years")

A fable: 80 x 4 [1Q]

Key: .model [4]

.model Quarter Bricks .mean

<chr> <qtr> <dist> <dbl>

1 Seasonal_naive 2005 Q3 N(428, 2336) 428

2 Seasonal_naive 2005 Q4 N(397, 2336) 397

3 Seasonal_naive 2006 Q1 N(355, 2336) 355

4 Seasonal_naive 2006 Q2 N(435, 2336) 435

... with 76 more rows

17

Visualising forecasts

brick_fc %>%
autoplot(aus_production, level = NULL) +
labs(title = "Clay brick production in Australia",

y = "Millions of bricks") +
guides(colour = guide_legend(title = "Forecast"))

200

300

400

500

600

1960 Q1 1980 Q1 2000 Q1
Quarter

M
ill

io
ns

 o
f b

ric
ks Forecast

Drift

Mean

Naive

Seasonal_naive

Clay brick production in Australia

18

Facebook closing stock price

Extract training data
fb_stock <- gafa_stock %>%
filter(Symbol == "FB") %>%
mutate(trading_day = row_number()) %>%
update_tsibble(index=trading_day, regular=TRUE)

Specify, estimate and forecast
fb_stock %>%
model(
Mean = MEAN(Close),
Naive = NAIVE(Close),
Drift = RW(Close ~ drift())

) %>%
forecast(h=42) %>%
autoplot(fb_stock, level = NULL) +
labs(title = "Facebook closing stock price", y="$US") +
guides(colour=guide_legend(title="Forecast"))

19

Facebook closing stock price

50

100

150

200

0 500 1000
trading_day

$U
S

Forecast

Drift

Mean

Naive

Facebook closing stock price

20

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 Residual diagnostics

4 Distributional forecasts and prediction intervals

5 Forecasting with transformations

6 Forecasting and decomposition

7 Evaluating forecast accuracy

21

Fitted values

ŷt|t−1 is the forecast of yt based on observations y1, . . . , yt−1.
We call these “fitted values”.
Sometimes drop the subscript: ŷt ≡ ŷt|t−1.
Often not true forecasts since parameters are estimated on all data.

For example:
ŷt = ȳ for average method.
ŷt = yt−1 + (yT − y1)/(T − 1) for drift method.

22

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: et = yt − ŷt|t−1.

Assumptions

1 {et} uncorrelated. If they aren’t, then information left in residuals that
should be used in computing forecasts.

2 {et} have mean zero. If they don’t, then forecasts are biased.

Useful properties (for distributions & prediction intervals)

3 {et} have constant variance.
4 {et} are normally distributed.

23

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: et = yt − ŷt|t−1.

Assumptions

1 {et} uncorrelated. If they aren’t, then information left in residuals that
should be used in computing forecasts.

2 {et} have mean zero. If they don’t, then forecasts are biased.

Useful properties (for distributions & prediction intervals)

3 {et} have constant variance.
4 {et} are normally distributed.

23

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: et = yt − ŷt|t−1.

Assumptions

1 {et} uncorrelated. If they aren’t, then information left in residuals that
should be used in computing forecasts.

2 {et} have mean zero. If they don’t, then forecasts are biased.

Useful properties (for distributions & prediction intervals)

3 {et} have constant variance.
4 {et} are normally distributed.

23

Facebook closing stock price

fb_stock %>% autoplot(Close)

50

100

150

200

0 400 800 1200
trading_day [1]

C
lo

se

24

Facebook closing stock price

fit <- fb_stock %>% model(NAIVE(Close))
augment(fit)

A tsibble: 1,258 x 7 [1]

Key: Symbol, .model [1]

Symbol .model trading_day Close .fitted .resid .innov

<chr> <chr> <int> <dbl> <dbl> <dbl> <dbl>

1 FB NAIVE(Close) 1 54.7 NA NA NA

2 FB NAIVE(Close) 2 54.6 54.7 -0.150 -0.150

3 FB NAIVE(Close) 3 57.2 54.6 2.64 2.64

4 FB NAIVE(Close) 4 57.9 57.2 0.720 0.720

5 FB NAIVE(Close) 5 58.2 57.9 0.310 0.310

6 FB NAIVE(Close) 6 57.2 58.2 -1.01 -1.01

7 FB NAIVE(Close) 7 57.9 57.2 0.720 0.720

8 FB NAIVE(Close) 8 55.9 57.9 -2.03 -2.03

9 FB NAIVE(Close) 9 57.7 55.9 1.83 1.83

10 FB NAIVE(Close) 10 57.6 57.7 -0.140 -0.140

... with 1,248 more rows

25

Facebook closing stock price

fit <- fb_stock %>% model(NAIVE(Close))
augment(fit)

A tsibble: 1,258 x 7 [1]

Key: Symbol, .model [1]

Symbol .model trading_day Close .fitted .resid .innov

<chr> <chr> <int> <dbl> <dbl> <dbl> <dbl>

1 FB NAIVE(Close) 1 54.7 NA NA NA

2 FB NAIVE(Close) 2 54.6 54.7 -0.150 -0.150

3 FB NAIVE(Close) 3 57.2 54.6 2.64 2.64

4 FB NAIVE(Close) 4 57.9 57.2 0.720 0.720

5 FB NAIVE(Close) 5 58.2 57.9 0.310 0.310

6 FB NAIVE(Close) 6 57.2 58.2 -1.01 -1.01

7 FB NAIVE(Close) 7 57.9 57.2 0.720 0.720

8 FB NAIVE(Close) 8 55.9 57.9 -2.03 -2.03

9 FB NAIVE(Close) 9 57.7 55.9 1.83 1.83

10 FB NAIVE(Close) 10 57.6 57.7 -0.140 -0.140

... with 1,248 more rows

25

Naïve forecasts:

ŷt|t−1 = yt−1

et = yt − ŷt|t−1 = yt − yt−1

ŷt|t−1 et

Facebook closing stock price

augment(fit) %>%
ggplot(aes(x = trading_day)) +
geom_line(aes(y = Close, colour = "Data")) +
geom_line(aes(y = .fitted, colour = "Fitted"))

50

100

150

200

0 400 800 1200
trading_day

C
lo

se

colour

Data

Fitted

26

Facebook closing stock price

augment(fit) %>%
filter(trading_day > 1100) %>%
ggplot(aes(x = trading_day)) +
geom_line(aes(y = Close, colour = "Data")) +
geom_line(aes(y = .fitted, colour = "Fitted"))

125

150

175

200

1100 1150 1200 1250
trading_day

C
lo

se

colour

Data

Fitted

27

Facebook closing stock price

augment(fit) %>%
autoplot(.resid) +
labs(y = "$US",

title = "Residuals from naïve method")

−40

−20

0

0 400 800 1200
trading_day [1]

$U
S

Residuals from naïve method

28

Facebook closing stock price

augment(fit) %>%
ggplot(aes(x = .resid)) +
geom_histogram(bins = 150) +
labs(title = "Histogram of residuals")

0

50

100

150

−40 −20 0
.resid

co
un

t

Histogram of residuals

29

Facebook closing stock price

augment(fit) %>%
ACF(.resid) %>%
autoplot() + labs(title = "ACF of residuals")

−0.06

−0.03

0.00

0.03

0.06

10 20 30
lag [1]

ac
f

ACF of residuals

30

gg_tsresiduals() function

gg_tsresiduals(fit)

−40

−20

0

0 400 800 1200
trading_day

In
no

va
tio

n
re

si
du

al
s

−0.06

−0.03

0.00

0.03

0.06

10 20 30
lag [1]

ac
f

0

50

100

150

−40 −20 0
.resid

co
un

t

31

ACF of residuals

We assume that the residuals are white noise (uncorrelated, mean zero, constant variance). If they
aren’t, then there is information left in the residuals that should be used in computing forecasts.

So a standard residual diagnostic is to check the ACF of the residuals of a forecasting method.

We expect these to look like white noise.

32

Portmanteau tests

rk = autocorrelation of residual at lag k

Consider a whole set of rk values, and develop a test to see whether the set is significantly different from
a zero set.

Box-Pierce test

Q = T
ℓ∑
k=1

r2k

where ℓ is max lag being considered and T is number of observations.

If each rk close to zero, Q will be small.
If some rk values large (positive or negative), Q will be large.

33

Portmanteau tests

rk = autocorrelation of residual at lag k

Consider a whole set of rk values, and develop a test to see whether the set is significantly different from
a zero set.

Box-Pierce test

Q = T
ℓ∑
k=1

r2k

where ℓ is max lag being considered and T is number of observations.

If each rk close to zero, Q will be small.
If some rk values large (positive or negative), Q will be large.

33

Portmanteau tests

rk = autocorrelation of residual at lag k

Consider a whole set of rk values, and develop a test to see whether the set is significantly different from
a zero set.

Ljung-Box test

Q∗ = T(T + 2)
ℓ∑
k=1

(T − k)−1r2k

where ℓ is max lag being considered and T is number of observations.

My preferences: ℓ = 10 for non-seasonal data, h = 2m for seasonal data (wherem is seasonal
period).
Better performance, especially in small samples.

34

Portmanteau tests

If data are WN, Q∗ has χ2 distribution with (ℓ − K) degrees of freedom where K = no. parameters in
model.
When applied to raw data, set K = 0.
lag = ℓ, dof = K

augment(fit) %>%
features(.resid, ljung_box, lag=10, dof=0)

A tibble: 1 x 4

Symbol .model lb_stat lb_pvalue

<chr> <chr> <dbl> <dbl>

1 FB NAIVE(Close) 12.1 0.276

35

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 Residual diagnostics

4 Distributional forecasts and prediction intervals

5 Forecasting with transformations

6 Forecasting and decomposition

7 Evaluating forecast accuracy

36

Forecast distributions

A forecast ŷT+h|T is (usually) the mean of the conditional distribution yT+h | y1, . . . , yT .
Most time series models produce normally distributed forecasts.
The forecast distribution describes the probability of observing any future value.

37

Forecast distributions

Assuming residuals are normal, uncorrelated, sd = σ̂:

Mean: yT+h|T ∼ N(ȳ, (1 + 1/T)σ̂2)

Naïve: yT+h|T ∼ N(yT, hσ̂2)

Seasonal naïve: yT+h|T ∼ N(yT+h−m(k+1), (k + 1)σ̂2)

Drift: yT+h|T ∼ N(yT + h
T−1 (yT − y1), h T+h

T σ̂2)

where k is the integer part of (h − 1)/m.

Note that when h = 1 and T is large, these all give the same approximate forecast variance: σ̂2.

38

Prediction intervals

A prediction interval gives a region within which we expect yT+h to lie with a specified probability.

Assuming forecast errors are normally distributed, then a 95% PI is

ŷT+h|T ± 1.96σ̂h

where σ̂h is the st dev of the h-step distribution.

When h = 1, σ̂h can be estimated from the residuals.

39

Prediction intervals

brick_fc %>% hilo(level = 95)

A tsibble: 80 x 5 [1Q]

Key: .model [4]

.model Quarter Bricks .mean ‘95%‘

<chr> <qtr> <dist> <dbl> <hilo>

1 Seasonal_naive 2005 Q3 N(428, 2336) 428 [333, 523]95

2 Seasonal_naive 2005 Q4 N(397, 2336) 397 [302, 492]95

3 Seasonal_naive 2006 Q1 N(355, 2336) 355 [260, 450]95

4 Seasonal_naive 2006 Q2 N(435, 2336) 435 [340, 530]95

5 Seasonal_naive 2006 Q3 N(428, 4672) 428 [294, 562]95

6 Seasonal_naive 2006 Q4 N(397, 4672) 397 [263, 531]95

7 Seasonal_naive 2007 Q1 N(355, 4672) 355 [221, 489]95

8 Seasonal_naive 2007 Q2 N(435, 4672) 435 [301, 569]95

9 Seasonal_naive 2007 Q3 N(428, 7008) 428 [264, 592]95

10 Seasonal_naive 2007 Q4 N(397, 7008) 397 [233, 561]95

... with 70 more rows

40

Prediction intervals

Point forecasts often useless without a measure of uncertainty (such as prediction intervals).
Prediction intervals require a stochastic model (with random errors, etc).
For most models, prediction intervals get wider as the forecast horizon increases.
Use level argument to control coverage.
Check residual assumptions before believing them.
Usually too narrow due to unaccounted uncertainty.

41

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 Residual diagnostics

4 Distributional forecasts and prediction intervals

5 Forecasting with transformations

6 Forecasting and decomposition

7 Evaluating forecast accuracy

42

Modelling with transformations

eggs <- prices %>%
filter(!is.na(eggs)) %>% select(eggs)

eggs %>% autoplot() +
labs(title="Annual egg prices",

y="$US (adjusted for inflation)")

100

200

300

1900 1925 1950 1975
year [1Y]

$U
S

 (
ad

ju
st

ed
 fo

r
in

fla
tio

n)

Annual egg prices

43

Modelling with transformations

Transformations used in the left of the formula will be automatically back-transformed. To model
log-transformed egg prices, you could use:

fit <- eggs %>%
model(RW(log(eggs) ~ drift()))

fit

A mable: 1 x 1

‘RW(log(eggs) ~ drift())‘

<model>

1 <RW w/ drift>

44

Forecasting with transformations

fc <- fit %>%
forecast(h = 50)

fc

A fable: 50 x 4 [1Y]

Key: .model [1]

.model year eggs .mean

<chr> <dbl> <dist> <dbl>

1 RW(log(eggs) ~ drift()) 1994 t(N(4.1, 0.018)) 61.8

2 RW(log(eggs) ~ drift()) 1995 t(N(4.1, 0.036)) 61.4

3 RW(log(eggs) ~ drift()) 1996 t(N(4.1, 0.054)) 61.0

4 RW(log(eggs) ~ drift()) 1997 t(N(4.1, 0.073)) 60.5

5 RW(log(eggs) ~ drift()) 1998 t(N(4.1, 0.093)) 60.1

6 RW(log(eggs) ~ drift()) 1999 t(N(4, 0.11)) 59.7

7 RW(log(eggs) ~ drift()) 2000 t(N(4, 0.13)) 59.3

8 RW(log(eggs) ~ drift()) 2001 t(N(4, 0.15)) 58.9

9 RW(log(eggs) ~ drift()) 2002 t(N(4, 0.17)) 58.6

10 RW(log(eggs) ~ drift()) 2003 t(N(4, 0.19)) 58.2

... with 40 more rows

45

Forecasting with transformations

fc %>% autoplot(eggs) +
labs(title="Annual egg prices",

y="US$ (adjusted for inflation)")

0

100

200

300

1900 1950 2000 2050
year

U
S

$
(a

dj
us

te
d

fo
r

in
fla

tio
n)

level

80

95

Annual egg prices

46

Bias adjustment

Back-transformed point forecasts are medians.
Back-transformed PI have the correct coverage.

Back-transformed means

Let X be have mean µ and variance σ2.

Let f(x) be back-transformation function, and Y = f(X).

Taylor series expansion about µ:

f(X) = f(µ) + (X − µ)f′(µ) +
1
2

(X − µ)2f′′(µ).

E[Y] = E[f(X)] = f(µ) + 1
2σ2f′′(µ)

47

Bias adjustment

Back-transformed point forecasts are medians.
Back-transformed PI have the correct coverage.

Back-transformed means

Let X be have mean µ and variance σ2.

Let f(x) be back-transformation function, and Y = f(X).

Taylor series expansion about µ:

f(X) = f(µ) + (X − µ)f′(µ) +
1
2

(X − µ)2f′′(µ).

E[Y] = E[f(X)] = f(µ) + 1
2σ2f′′(µ)

47

Bias adjustment

Back-transformed point forecasts are medians.
Back-transformed PI have the correct coverage.

Back-transformed means

Let X be have mean µ and variance σ2.

Let f(x) be back-transformation function, and Y = f(X).

Taylor series expansion about µ:

f(X) = f(µ) + (X − µ)f′(µ) +
1
2

(X − µ)2f′′(µ).

E[Y] = E[f(X)] = f(µ) + 1
2σ2f′′(µ)

47

Bias adjustment

Box-Cox back-transformation:

yt =

 exp(wt) λ = 0;
(λWt + 1)1/λ λ ̸= 0.

f(x) =

e
x λ = 0;

(λx + 1)1/λ λ ̸= 0.

f′′(x) =

e
x λ = 0;

(1 − λ)(λx + 1)1/λ−2 λ ̸= 0.

E[Y] =

e
µ

[
1 + σ2

2

]
λ = 0;

(λµ + 1)1/λ
[
1 + σ2(1−λ)

2(λµ+1)2
]

λ ̸= 0.

48

Bias adjustment

Box-Cox back-transformation:

yt =

 exp(wt) λ = 0;
(λWt + 1)1/λ λ ̸= 0.

f(x) =

e
x λ = 0;

(λx + 1)1/λ λ ̸= 0.

f′′(x) =

e
x λ = 0;

(1 − λ)(λx + 1)1/λ−2 λ ̸= 0.

E[Y] =

e
µ

[
1 + σ2

2

]
λ = 0;

(λµ + 1)1/λ
[
1 + σ2(1−λ)

2(λµ+1)2
]

λ ̸= 0.
48

Bias adjustment

fc %>%
autoplot(eggs, level = 80, point_forecast = lst(mean, median)) +
labs(title="Annual egg prices",

y="US$ (adjusted for inflation)")

0

100

200

300

1900 1950 2000 2050
year

U
S

$
(a

dj
us

te
d

fo
r

in
fla

tio
n)

level

80

Point forecast

mean

median

Annual egg prices

49

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 Residual diagnostics

4 Distributional forecasts and prediction intervals

5 Forecasting with transformations

6 Forecasting and decomposition

7 Evaluating forecast accuracy

50

Forecasting and decomposition

yt = Ŝt + Ât

Ât is seasonally adjusted component
Ŝt is seasonal component.

Forecast Ŝt using SNAIVE.
Forecast Ât using non-seasonal time series method.
Combine forecasts of Ŝt and Ât to get forecasts of original data.

51

US Retail Employment

us_retail_employment <- us_employment %>%
filter(year(Month) >= 1990, Title == "Retail Trade") %>%
select(-Series_ID)

us_retail_employment

A tsibble: 357 x 3 [1M]

Month Title Employed

<mth> <chr> <dbl>

1 1990 Jan Retail Trade 13256.

2 1990 Feb Retail Trade 12966.

3 1990 Mär Retail Trade 12938.

4 1990 Apr Retail Trade 13012.

5 1990 Mai Retail Trade 13108.

6 1990 Jun Retail Trade 13183.

7 1990 Jul Retail Trade 13170.

8 1990 Aug Retail Trade 13160.

9 1990 Sep Retail Trade 13113.

10 1990 Okt Retail Trade 13185.

... with 347 more rows

52

US Retail Employment

dcmp <- us_retail_employment %>%
model(STL(Employed)) %>%
components() %>% select(-.model)

dcmp

A tsibble: 357 x 6 [1M]

Month Employed trend season_year remainder season_adjust

<mth> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1990 Jan 13256. 13288. -33.0 0.836 13289.

2 1990 Feb 12966. 13269. -258. -44.6 13224.

3 1990 Mär 12938. 13250. -290. -22.1 13228.

4 1990 Apr 13012. 13231. -220. 1.05 13232.

5 1990 Mai 13108. 13211. -114. 11.3 13223.

6 1990 Jun 13183. 13192. -24.3 15.5 13207.

7 1990 Jul 13170. 13172. -23.2 21.6 13193.

8 1990 Aug 13160. 13151. -9.52 17.8 13169.

9 1990 Sep 13113. 13131. -39.5 22.0 13153.

10 1990 Okt 13185. 13110. 61.6 13.2 13124.

... with 347 more rows

53

US Retail Employment

dcmp %>%
model(NAIVE(season_adjust)) %>%
forecast() %>%
autoplot(dcmp) +
labs(title = "Naive forecasts of seasonally adjusted data")

13000

14000

15000

16000

1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month

se
as

on
_a

dj
us

t

level

80

95

Naive forecasts of seasonally adjusted data

54

US Retail Employment

us_retail_employment %>%
model(stlf = decomposition_model(
STL(Employed ~ trend(window = 7), robust = TRUE),
NAIVE(season_adjust)

)) %>%
forecast() %>%
autoplot(us_retail_employment)

13000

14000

15000

16000

1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month

E
m

pl
oy

ed level

80

95

55

Decomposition models

decomposition_model() creates a decomposition model

You must provide a method for forecasting the season_adjust series.
A seasonal naive method is used by default for the seasonal components.
The variances from both the seasonally adjusted and seasonal forecasts are combined.

56

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 Residual diagnostics

4 Distributional forecasts and prediction intervals

5 Forecasting with transformations

6 Forecasting and decomposition

7 Evaluating forecast accuracy

57

Training and test sets

time

Training data Test data

A model which fits the training data well will not necessarily forecast well.
A perfect fit can always be obtained by using a model with enough parameters.
Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.
The test set must not be used for any aspect of model development or calculation of forecasts.
Forecast accuracy is based only on the test set.

58

Forecast errors

Forecast “error”: the difference between an observed value and its forecast.
eT+h = yT+h − ŷT+h|T,

where the training data is given by {y1, . . . , yT}

Unlike residuals, forecast errors on the test set involve multi-step forecasts.
These are true forecast errors as the test data is not used in computing ŷT+h|T .

59

Measures of forecast accuracy

400

450

500

1995 Q1 2000 Q1 2005 Q1 2010 Q1
Quarter

M
eg

al
itr

es

Forecast

Drift

Mean

Naive

Seasonal_naive

Forecasts for quarterly beer production

60

Measures of forecast accuracy

yT+h = (T + h)th observation, h = 1, . . . ,H
ŷT+h|T = its forecast based on data up to time T.
eT+h = yT+h − ŷT+h|T

MAE = mean(|eT+h|)
MSE = mean(e2T+h) RMSE =

√
mean(e2T+h)

MAPE = 100mean(|eT+h|/|yT+h|)

MAE, MSE, RMSE are all scale dependent.
MAPE is scale independent but is only sensible if yt ≫ 0 for all t, and y has a natural zero.

61

Measures of forecast accuracy

yT+h = (T + h)th observation, h = 1, . . . ,H
ŷT+h|T = its forecast based on data up to time T.
eT+h = yT+h − ŷT+h|T

MAE = mean(|eT+h|)
MSE = mean(e2T+h) RMSE =

√
mean(e2T+h)

MAPE = 100mean(|eT+h|/|yT+h|)

MAE, MSE, RMSE are all scale dependent.
MAPE is scale independent but is only sensible if yt ≫ 0 for all t, and y has a natural zero.

61

Measures of forecast accuracy

Mean Absolute Scaled Error

MASE = mean(|eT+h|/Q)
where Q is a stable measure of the scale of the time series {yt}.

Proposed by Hyndman and Koehler (IJF, 2006).

For non-seasonal time series,

Q = (T − 1)−1
T∑
t=2

|yt − yt−1|

works well. Then MASE is equivalent to MAE relative to a naïve method.

62

Measures of forecast accuracy

Mean Absolute Scaled Error

MASE = mean(|eT+h|/Q)
where Q is a stable measure of the scale of the time series {yt}.

Proposed by Hyndman and Koehler (IJF, 2006).

For seasonal time series,

Q = (T − m)−1
T∑

t=m+1

|yt − yt−m|

works well. Then MASE is equivalent to MAE relative to a seasonal naïve method.

63

Measures of forecast accuracy

400

450

500

1995 Q1 2000 Q1 2005 Q1 2010 Q1
Quarter

M
eg

al
itr

es

Forecast

Drift

Mean

Naive

Seasonal_naive

Forecasts for quarterly beer production

64

Measures of forecast accuracy

recent_production <- aus_production %>%
filter(year(Quarter) >= 1992)

train <- recent_production %>%
filter(year(Quarter) <= 2007)

beer_fit <- train %>%
model(
Mean = MEAN(Beer),
Naive = NAIVE(Beer),
Seasonal_naive = SNAIVE(Beer),
Drift = RW(Beer ~ drift())

)
beer_fc <- beer_fit %>%
forecast(h = 10)

65

Measures of forecast accuracy

accuracy(beer_fit)

A tibble: 4 x 6

.model .type RMSE MAE MAPE MASE

<chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Drift Training 65.3 54.8 12.2 3.83

2 Mean Training 43.6 35.2 7.89 2.46

3 Naive Training 65.3 54.7 12.2 3.83

4 Seasonal_naive Training 16.8 14.3 3.31 1

accuracy(beer_fc, recent_production)

A tibble: 4 x 6

.model .type RMSE MAE MAPE MASE

<chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Drift Test 64.9 58.9 14.6 4.12

2 Mean Test 38.4 34.8 8.28 2.44

3 Naive Test 62.7 57.4 14.2 4.01

4 Seasonal_naive Test 14.3 13.4 3.17 0.937

66

Time series cross-validation

Traditional evaluation
Training data Test data

time

Time series cross-validation
h = 1

time

67

Time series cross-validation

Traditional evaluation
Training data Test data

time

Time series cross-validation
h = 1

time

67

Time series cross-validation

Traditional evaluation
Training data Test data

time

Time series cross-validation
h = 2

time

68

Time series cross-validation

Traditional evaluation
Training data Test data

time

Time series cross-validation
h = 3

time

69

Time series cross-validation

Traditional evaluation
Training data Test data

time

Time series cross-validation
h = 4

time

70

Time series cross-validation

Traditional evaluation
Training data Test data

time

Time series cross-validation
h = 4

time

70

Forecast accuracy averaged over test sets.
Also known as "evaluation on a rolling
forecasting origin"

Time series cross-validation

Stretch with a minimum length of 3, growing by 1 each step.
fb_stretch <- fb_stock %>%
stretch_tsibble(.init = 3, .step = 1) %>%
filter(.id != max(.id))

A tsibble: 790,650 x 4 [1]

Key: .id [1,255]

Date Close trading_day .id

<date> <dbl> <int> <int>

1 2014-01-02 54.7 1 1

2 2014-01-03 54.6 2 1

3 2014-01-06 57.2 3 1

4 2014-01-02 54.7 1 2

5 2014-01-03 54.6 2 2

6 2014-01-06 57.2 3 2

7 2014-01-07 57.9 4 2

... with 790,643 more rows

71

Time series cross-validation

Estimate RW w/ drift models for each window.

fit_cv <- fb_stretch %>%
model(RW(Close ~ drift()))

A mable: 1,255 x 3

Key: .id, Symbol [1,255]

.id Symbol ‘RW(Close ~ drift())‘

<int> <chr> <model>

1 1 FB <RW w/ drift>

2 2 FB <RW w/ drift>

3 3 FB <RW w/ drift>

4 4 FB <RW w/ drift>

... with 1,251 more rows

72

Time series cross-validation

Produce one step ahead forecasts from all models.

fc_cv <- fit_cv %>%
forecast(h=1)

A fable: 1,255 x 5 [1]

Key: .id, Symbol [1,255]

.id Symbol trading_day Close .mean

<int> <chr> <dbl> <dist> <dbl>

1 1 FB 4 N(58, 3.9) 58.4

2 2 FB 5 N(59, 2) 59.0

3 3 FB 6 N(59, 1.5) 59.1

4 4 FB 7 N(58, 1.8) 57.7

... with 1,251 more rows

73

Time series cross-validation

Cross-validated
fc_cv %>% accuracy(fb_stock)
Training set
fb_stock %>% model(RW(Close ~ drift())) %>% accuracy()

RMSE MAE MAPE

Cross-validation 2.418 1.469 1.266
Training 2.414 1.465 1.261

A good way to choose the best forecasting model is to find the model with the smallest RMSE computed
using time series cross-validation.

74

	A tidy forecasting workflow
	Some simple forecasting methods
	Residual diagnostics
	Distributional forecasts and prediction intervals
	Forecasting with transformations
	Forecasting and decomposition
	Evaluating forecast accuracy

