Predictive Analytics

Ch7. Regression models
Prof. Dr. Benjamin Buchwitz

Outline

1 The linear model with time series
2 Some useful predictors for linear models
3 Residual diagnostics
4 Selecting predictors and forecast evaluation
5 Forecasting with regression
6 Matrix formulation
7 Correlation, causation and forecasting

$$
y_{t}=\beta_{0}+\beta_{1} x_{1, t}+\beta_{2} x_{2, t}+\cdots+\beta_{k} x_{k, t}+\varepsilon_{t}
$$

$\square y_{t}$ is the variable we want to predict: the "response" variable
■ Each $x_{j, t}$ is numerical and is called a "predictor". They are usually assumed to be known for all past and future times.
\square The coefficients $\beta_{1}, \ldots, \beta_{k}$ measure the effect of each predictor after taking account of the effect of all other predictors in the model.

That is, the coefficients measure the marginal effects.
■ ε_{t} is a white noise error term

Example: US consumption expenditure

```
us_change %>%
    pivot_longer(c(Consumption, Income), names_to="Series") %>%
    autoplot(value) +
    labs(y="% change")
```


Series

- Consumption
- Income

Example: US consumption expenditure

```
us_change %>%
    ggplot(aes(x = Income, y = Consumption)) +
        labs(y = "Consumption (quarterly % change)",
            x = "Income (quarterly % change)") +
        geom_point() + geom_smooth(method = "lm", se = FALSE)
```


Example: US consumption expenditure

```
fit_cons <- us_change %>%
    model(lm = TSLM(Consumption ~ Income))
report(fit_cons)
```

\#\# Series: Consumption
\#\# Model: TSLM
\#\#
\#\# Residuals:

\#\#	Min	$1 Q$	Median	$3 Q$	Max
$\# \#$	-2.582	-0.278	0.019	0.323	1.422

\#\#
\#\# Coefficients:

\#\#	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
\#\# (Intercept)	0.5445	0.0540	10.08	$<2 \mathrm{e}-16 \star * *$
\#\# Income	0.2718	0.0467	5.82	$2.4 \mathrm{e}-08 * * *$

\#\# ---

Example: US consumption expenditure

Example: US consumption expenditure

Example: US consumption expenditure

```
fit_consMR <- us_change %>%
    model(lm = TSLM(Consumption ~ Income + Production + Unemployment + Savings))
report(fit_consMR)
```

\#\# Series: Consumption
\#\# Model: TSLM
\#\#
\#\# Residuals:

\#\#	Min	$1 Q$	Median	$3 Q$	Max
\#\#	-0.906	-0.158	-0.036	0.136	1.155

\#\#
\#\# Coefficients:

| \#\# | Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$ | | | |
| :--- | ---: | ---: | ---: | ---: | :--- |
| \#\# (Intercept) | 0.25311 | 0.03447 | 7.34 | $5.7 \mathrm{e}-12$ *** |
| \#\# Income | 0.74058 | 0.04012 | 18.46 | $<2 \mathrm{e}-16$ *** |
| \#\# Production | 0.04717 | 0.02314 | 2.04 | $0.043 \star$ |

Example: US consumption expenditure

Percent change in US consumption expenditure

Example: US consumption expenditure

Percentage change in US consumption expenditure

Example: US consumption expenditure

fit_consMR \%>\% gg_tsresiduals()

Quarter

Outline

1 The linear model with time series
2 Some useful predictors for linear models
3 Residual diagnostics
4 Selecting predictors and forecast evaluation
5 Forecasting with regression
6 Matrix formulation
7 Correlation, causation and forecasting

Trend

Linear trend

$$
x_{t}=t
$$

■ $t=1,2, \ldots, T$

- Strong assumption that trend will continue.

Dummy variables

If a categorical variable takes only two values (e.g., 'Yes' or 'No'), then an equivalent numerical variable can be constructed taking value 1 if yes and 0 if no. This is called a dummy variable.

	A	B
1	Yes	1
2	Yes	1
3	No	0
4	Yes	1
5	No	0
6	No	0
7	Yes	1
8	Yes	1
9	No	0
10	No	0
11	No	0
12	No	0
13	Yes	1
14	No	0

Dummy variables

If there are more than two categories, then the variable can be coded using several dummy variables (one fewer than the total number of categories).

	A	B	C		D
(

■ Using one dummy for each category gives too many dummy variables!

- The regression will then be singular and inestimable.
- Either omit the constant, or omit the dummy for one category.
- The coefficients of the dummies are relative to the omitted category.

Seasonal dummies

■ For quarterly data: use 3 dummies

- For monthly data: use 11 dummies
- For daily data: use 6 dummies
\square What to do with weekly data?

Seasonal dummies

■ For quarterly data: use 3 dummies

- For monthly data: use 11 dummies
\square For daily data: use 6 dummies
\square What to do with weekly data?

Outliers

- If there is an outlier, you can use a dummy variable to remove its effect.

Seasonal dummies

■ For quarterly data: use 3 dummies

- For monthly data: use 11 dummies
- For daily data: use 6 dummies
\square What to do with weekly data?

Outliers

- If there is an outlier, you can use a dummy variable to remove its effect.

Public holidays

■ For daily data: if it is a public holiday, dummy=1, otherwise dummy=0.

Beer production revisited

Australian quarterly beer production

Beer production revisited

Australian quarterly beer production

Regression model

$$
y_{t}=\beta_{0}+\beta_{1} t+\beta_{2} d_{2, t}+\beta_{3} d_{3, t}+\beta_{4} d_{4, t}+\varepsilon_{t}
$$

Beer production revisited

```
fit_beer <- recent_production %>% model(TSLM(Beer ~ trend() + season()))
report(fit_beer)
## Series: Beer
## Model: TSLM
##
## Residuals:
\begin{tabular}{rrrrrr} 
\#\# & Min & \(1 Q\) & Median & \(3 Q\) & Max \\
\(\# \#\) & -42.9 & -7.6 & -0.5 & 8.0 & 21.8
\end{tabular}
##
## Coefficients:
\begin{tabular}{lrrrrl} 
\#\# & Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\) \\
\#\# (Intercept) & 441.8004 & 3.7335 & 118.33 & \(<2 \mathrm{e}-16\) *** \\
\#\# trend() & -0.3403 & 0.0666 & -5.11 & \(2.7 \mathrm{e}-06\) *** \\
\#\# season()year2 & -34.6597 & 3.9683 & -8.73 & \(9.1 \mathrm{e}-13\) *** \\
\#\# season()year3 & -17.8216 & 4.0225 & -4.43 & \(3.4 \mathrm{e}-05\) ***
\end{tabular}
```


Beer production revisited

```
augment(fit_beer) %>%
    ggplot(aes(x = Quarter)) +
    geom_line(aes(y = Beer, colour = "Data")) +
    geom_line(aes(y = .fitted, colour = "Fitted")) +
    labs(y="Megalitres",title ="Australian quarterly beer production") +
    scale_colour_manual(values = c(Data = "black", Fitted = "#D55E00"))
```


Australian quarterly beer production

colour

- Data
- Fitted

Beer production revisited

Quarterly beer production

Beer production revisited

fit_beer \%>\% gg_tsresiduals()

Beer production revisited

fit_beer \%>\% forecast \%>\% autoplot(recent_production)

level

Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:

$$
\begin{aligned}
s_{k}(t) & =\sin \left(\frac{2 \pi k t}{m}\right) \quad c_{k}(t)=\cos \left(\frac{2 \pi k t}{m}\right) \\
y_{t} & =a+b t+\sum_{k=1}^{K}\left[\alpha_{k} s_{k}(t)+\beta_{k} c_{k}(t)\right]+\varepsilon_{t}
\end{aligned}
$$

■ Every periodic function can be approximated by sums of sin and cos terms for large enough K.

- Choose K by minimizing AICc.
- Called "harmonic regression"

TSLM (y ~ trend() + fourier (K))

Harmonic regression: beer production

```
fourier_beer <- recent_production %>% model(TSLM(Beer ~ trend() + fourier(K=2)))
report(fourier_beer)
## Series: Beer
## Model: TSLM
##
## Residuals:
\begin{tabular}{rrrrrr} 
\#\# & Min & \(1 Q\) & Median & \(3 Q\) & Max \\
\(\# \#\) & -42.9 & -7.6 & -0.5 & 8.0 & 21.8
\end{tabular}
##
## Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \#\# & \multicolumn{5}{|l|}{Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)} \\
\hline \#\# (Intercept) & 446.8792 & 2.8732 & 155.53 & < 2e-16 & * \\
\hline \#\# trend() & -0.3403 & 0.0666 & -5.11 & \(2.7 \mathrm{e}-06\) & *** \\
\hline \#\# fourier (K = 2) C1_4 & 8.9108 & 2.0112 & 4.43 & 3.4e-05 & * \\
\hline \#\# fourier(K = 2)S1_4 & 53.728 & 2.0112 & -26. & 2 e & \\
\hline
\end{tabular}
```


Harmonic regression: eating-out expenditure

```
aus_cafe <- aus_retail %>% filter(
    Industry == "Cafes, restaurants and takeaway food services",
    year(Month) %in% 2004:2018
    ) %>% summarise(Turnover = sum(Turnover))
aus_cafe %>% autoplot(Turnover)
```


Harmonic regression: eating-out expenditure

```
fit <- aus_cafe %>%
    model(K1 = TSLM(log(Turnover) ~ trend() + fourier(K = 1)),
        K2 = TSLM(log(Turnover) ~ trend() + fourier(K = 2)),
        K3 = TSLM(log(Turnover) ~ trend() + fourier(K = 3)),
        K4 = TSLM(log(Turnover) ~ trend() + fourier(K = 4)),
        K5 = TSLM(log(Turnover) ~ trend() + fourier(K = 5)),
        K6 = TSLM(log(Turnover) ~ trend() + fourier(k = 6)))
glance(fit) %>% select(.model, r_squared, adj_r_squared, AICc)
```

\#\# \# A tibble: 6×4
\#\# .model r_squared adj_r_squared AICc
\#\# <chr> <dbl> <dbl> <dbl>
\#\# 1 K1 0.962 0.962-1085.
\#\# 2 K2 0.966 0.965 -1099.
\#\# 3 K3
0.976
0.975 -1160.
\#\# 4 K4
0.980
$0.979-1183$.
\#\# 5 K5
0.985
$0.984-1234$.

Harmonic regression: eating-out expenditure

Intervention variables

Spikes

- Equivalent to a dummy variable for handling an outlier.

Intervention variables

Spikes

- Equivalent to a dummy variable for handling an outlier.

Steps

■ Variable takes value 0 before the intervention and 1 afterwards.

Intervention variables

Spikes

- Equivalent to a dummy variable for handling an outlier.

Steps

■ Variable takes value 0 before the intervention and 1 afterwards.

Change of slope

- Variables take values 0 before the intervention and values $\{1,2,3, \ldots\}$ afterwards.

For monthly data

■ Christmas: always in December so part of monthly seasonal effect
■ Easter: use a dummy variable $v_{t}=1$ if any part of Easter is in that month, $v_{t}=0$ otherwise.

- Ramadan and Chinese new year similar.

Trading days

With monthly data, if the observations vary depending on how many different types of days in the month, then trading day predictors can be useful.

$$
\begin{gathered}
z_{1}=\text { \# Mondays in month; } \\
z_{2}=\# \text { Tuesdays in month; } \\
\vdots \\
z_{7}=\text { \# Sundays in month. }
\end{gathered}
$$

Distributed lags

Lagged values of a predictor.
Example: x is advertising which has a delayed effect
$x_{1}=$ advertising for previous month;
$x_{2}=$ advertising for two months previously;
$x_{m}=$ advertising for m months previously.

Nonlinear trend

Piecewise linear trend with bend at τ

$$
\begin{aligned}
& x_{1, t}=t \\
& x_{2, t}= \begin{cases}0 & t<\tau \\
(t-\tau) & t \geq \tau\end{cases}
\end{aligned}
$$

Nonlinear trend

Piecewise linear trend with bend at τ

$$
\begin{aligned}
& x_{1, t}=t \\
& x_{2, t}= \begin{cases}0 & t<\tau \\
(t-\tau) & t \geq \tau\end{cases}
\end{aligned}
$$

Quadratic or higher order trend

$$
x_{1, t}=t, \quad x_{2, t}=t^{2},
$$

Nonlinear trend

Piecewise linear trend with bend at τ

$$
\begin{aligned}
& x_{1, t}=t \\
& x_{2, t}= \begin{cases}0 & t<\tau \\
(t-\tau) & t \geq \tau\end{cases}
\end{aligned}
$$

Quadratic or higher order trend

$$
\begin{aligned}
& x_{1, t}=t, \quad x_{2, t}=t^{2}, \quad \ldots \\
& \text { NOT RECOMMENDED! }
\end{aligned}
$$

Example: Boston marathon winning times

```
marathon <- boston_marathon %>%
    filter(Event == "Men's open division") %>%
    select(-Event) %>%
    mutate(Minutes = as.numeric(Time)/60)
marathon %>% autoplot(Minutes) +
    labs(y="Winning times in minutes")
```


Example: Boston marathon winning times

```
fit_trends <- marathon %>%
    model(
        # Linear trend
        linear = TSLM(Minutes ~ trend()),
        # Exponential trend
        exponential = TSLM(log(Minutes) ~ trend()),
        # Piecewise linear trend
        piecewise = TSLM(Minutes ~ trend(knots = c(1940, 1980)))
    )
```

fit_trends
\#\# \# A mable: 1×3
\#\# linear exponential piecewise
\#\# <model> <model> <model>
\#\# 1 <TSLM> <TSLM> <TSLM>

Example: Boston marathon winning times

```
fit_trends %>% forecast(h=10) %>% autoplot(marathon)
```

Boston marathon winning times

Example: Boston marathon winning times

fit_trends \%>\% select(piecewise) \%>\% gg_tsresiduals()

Outline

1 The linear model with time series
2 Some useful predictors for linear models

3 Residual diagnostics

4 Selecting predictors and forecast evaluation
5 Forecasting with regression
6 Matrix formulation
7 Correlation, causation and forecasting

Multiple regression and forecasting

For forecasting purposes, we require the following assumptions:

- ε_{t} are uncorrelated and zero mean
- ε_{t} are uncorrelated with each $x_{j, t}$.

For forecasting purposes, we require the following assumptions:

■ ε_{t} are uncorrelated and zero mean

- ε_{t} are uncorrelated with each $x_{j, t}$.

It is useful to also have $\varepsilon_{t} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ when producing prediction intervals or doing statistical tests.

Residual plots

Useful for spotting outliers and whether the linear model was appropriate.

- Scatterplot of residuals ε_{t} against each predictor $x_{j, t}$.
- Scatterplot residuals against the fitted values \hat{y}_{t}
- Expect to see scatterplots resembling a horizontal band with no values too far from the band and no patterns such as curvature or increasing spread.

Residual patterns

- If a plot of the residuals vs any predictor in the model shows a pattern, then the relationship is nonlinear.
- If a plot of the residuals vs any predictor not in the model shows a pattern, then the predictor should be added to the model.
- If a plot of the residuals vs fitted values shows a pattern, then there is heteroscedasticity in the errors. (Could try a transformation.)

Outline

1 The linear model with time series
2 Some useful predictors for linear models
3 Residual diagnostics
4 Selecting predictors and forecast evaluation
5 Forecasting with regression
6 Matrix formulation
7 Correlation, causation and forecasting

Comparing regression models

Computer output for regression will always give the R^{2} value. This is a useful summary of the model.

- It is equal to the square of the correlation between y and \hat{y}.
- It is often called the "coefficient of determination' '.
- It can also be calculated as follows:

$$
R^{2}=\frac{\sum\left(\hat{y}_{t}-\bar{y}\right)^{2}}{\sum\left(y_{t}-\bar{y}\right)^{2}}
$$

- It is the proportion of variance accounted for (explained) by the predictors.

Comparing regression models

However ...
$\square R^{2}$ does not allow for "degrees of freedom" '.

- Adding any variable tends to increase the value of R^{2}, even if that variable is irrelevant.

Comparing regression models

However ...
$\square R^{2}$ does not allow for "degrees of freedom" '.

- Adding any variable tends to increase the value of R^{2}, even if that variable is irrelevant.

To overcome this problem, we can use adjusted R^{2} :

$$
\bar{R}^{2}=1-\left(1-R^{2}\right) \frac{T-1}{T-k-1}
$$

where $k=$ no. predictors and $T=$ no. observations.

Comparing regression models

However ...
$\square R^{2}$ does not allow for "degrees of freedom' "
■ Adding any variable tends to increase the value of R^{2}, even if that variable is irrelevant.

To overcome this problem, we can use adjusted R^{2} :

$$
\bar{R}^{2}=1-\left(1-R^{2}\right) \frac{T-1}{T-k-1}
$$

where $k=$ no. predictors and $T=$ no. observations.

Maximizing $\overline{\mathrm{R}}^{2}$ is equivalent to minimizing $\hat{\sigma}^{2}$.

$$
\hat{\sigma}^{2}=\frac{1}{T-k-1} \sum_{t=1}^{T} \varepsilon_{t}^{2}
$$

Akaike's Information Criterion

$$
\text { AIC }=-2 \log (L)+2(k+2)
$$

where L is the likelihood and k is the number of predictors in the model.

Akaike's Information Criterion

$$
\operatorname{AIC}=-2 \log (L)+2(k+2)
$$

where L is the likelihood and k is the number of predictors in the model.

- AIC penalizes terms more heavily than \bar{R}^{2}.
- Minimizing the AIC is asymptotically equivalent to minimizing MSE via leave-one-out cross-validation (for any linear regression).

Corrected AIC

For small values of T, the AIC tends to select too many predictors, and so a bias-corrected version of the AIC has been developed.

$$
\operatorname{AIC}_{C}=A I C+\frac{2(k+2)(k+3)}{T-k-3}
$$

As with the AIC, the $\mathrm{AIC}_{\mathrm{C}}$ should be minimized.

Bayesian Information Criterion

$$
\mathrm{BIC}=-2 \log (L)+(k+2) \log (T)
$$

where L is the likelihood and k is the number of predictors in the model.

$$
\mathrm{BIC}=-2 \log (L)+(k+2) \log (T)
$$

where L is the likelihood and k is the number of predictors in the model.

- BIC penalizes terms more heavily than AIC
- Also called SBIC and SC.
- Minimizing BIC is asymptotically equivalent to leave-v-out cross-validation when $v=T[1-1 /(\log (T)-1)]$.

For regression, leave-one-out cross-validation is faster and more efficient than time-series cross-validation.

■ Select one observation for test set, and use remaining observations in training set. Compute error on test observation.

- Repeat using each possible observation as the test set.
- Compute accuracy measure over all errors.

Cross-validation

Traditional evaluation

Training data

Cross-validation

Traditional evaluation

Time series cross-validation

Cross-validation

Traditional evaluation

Leave-one-out cross-validation

Cross-validation

Traditional evaluation

Leave-one-out cross-validation

Comparing regression models

```
glance(fit_trends) %>%
    select(.model, r_squared, adj_r_squared, AICc, CV)
```

\#\# \# A tibble: 3 x 5
\#\# .model r_squared adj_r_squared AICc CV
\#\# <chr> <dbl> <dbl> <dbl> <dbl>
\#\# 1 linear
0.728
0.726 452. 39.1
\#\# 2 exponential
0.744
$0.742-779.0 .00176$
\#\# 3 piecewise
0.767
0.761438 .34 .8

■ Be careful making comparisons when transformations are used.

Choosing regression variables

Best subsets regression

- Fit all possible regression models using one or more of the predictors.

■ Choose the best model based on one of the measures of predictive ability (CV, AIC, AICC).

Choosing regression variables

Best subsets regression

- Fit all possible regression models using one or more of the predictors.

■ Choose the best model based on one of the measures of predictive ability (CV, AIC, AICC).

Warning!

- If there are a large number of predictors, this is not possible.

■ For example, 44 predictors leads to 18 trillion possible models!

Choosing regression variables

Backwards stepwise regression

- Start with a model containing all variables.
- Try subtracting one variable at a time. Keep the model if it has lower CV or AICc.
- Iterate until no further improvement.

Choosing regression variables

Backwards stepwise regression

- Start with a model containing all variables.
- Try subtracting one variable at a time. Keep the model if it has lower CV or AICc.
- Iterate until no further improvement.

Notes

■ Stepwise regression is not guaranteed to lead to the best possible model.

- Inference on coefficients of final model will be wrong.

Outline

1 The linear model with time series
2 some useful predictors for linear models
3 Residual diagnostics
4 Selecting predictors and forecast evaluation

5 Forecasting with regression

6 Matrix formulation
7 Correlation, causation and forecasting

■ Ex ante forecasts are made using only information available in advance.

- require forecasts of predictors
- Ex post forecasts are made using later information on the predictors.
- useful for studying behaviour of forecasting models.

■ trend, seasonal and calendar variables are all known in advance, so these don't need to be forecast.

Scenario based forecasting

- Assumes possible scenarios for the predictor variables

■ Prediction intervals for scenario based forecasts do not include the uncertainty associated with the future values of the predictor variables.

Building a predictive regression model

- If getting forecasts of predictors is difficult, you can use lagged predictors instead.

$$
y_{t}=\beta_{0}+\beta_{1} x_{1, t-h}+\cdots+\beta_{k} x_{k, t-h}+\varepsilon_{t}
$$

- A different model for each forecast horizon h.

US Consumption

```
fit_consBest <- us_change %>%
    model(
        TSLM(Consumption ~ Income + Savings + Unemployment)
    )
future_scenarios <- scenarios(
    Increase = new_data(us_change, 4) %>%
        mutate(Income=1, Savings=0.5, Unemployment=0),
    Decrease = new_data(us_change, 4) %>%
        mutate(Income=-1, Savings=-0.5, Unemployment=0),
    names_to = "Scenario")
fc <- forecast(fit_consBest, new_data = future_scenarios)
```


US Consumption

```
us_change %>% autoplot(Consumption) +
    labs(y="% change in US consumption") +
    autolayer(fc) +
    labs(title = "US consumption", y = "% change")
```

US consumption

Scenario
level
80
95

Outline

1 The linear model with time series
2 some useful predictors for linear models
3 Residual diagnostics
4 Selecting predictors and forecast evaluation
5 Forecasting with regression
6 Matrix formulation
7 Correlation, causation and forecasting

Matrix formulation

$$
y_{t}=\beta_{0}+\beta_{1} x_{1, t}+\beta_{2} x_{2, t}+\cdots+\beta_{k} x_{k, t}+\varepsilon_{t}
$$

Matrix formulation

$$
y_{t}=\beta_{0}+\beta_{1} x_{1, t}+\beta_{2} x_{2, t}+\cdots+\beta_{k} x_{k, t}+\varepsilon_{t} .
$$

Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{T}\right)^{\prime}, \boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{T}\right)^{\prime}, \boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)^{\prime}$ and

$$
\boldsymbol{X}=\left[\begin{array}{ccccc}
1 & x_{1,1} & x_{2,1} & \ldots & x_{k, 1} \\
1 & x_{1,2} & x_{2,2} & \ldots & x_{k, 2} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{1, T} & x_{2, T} & \ldots & x_{k, T}
\end{array}\right] .
$$

Matrix formulation

$$
y_{t}=\beta_{0}+\beta_{1} x_{1, t}+\beta_{2} x_{2, t}+\cdots+\beta_{k} x_{k, t}+\varepsilon_{t} .
$$

Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{T}\right)^{\prime}, \boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{T}\right)^{\prime}, \boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)^{\prime}$ and

$$
\boldsymbol{X}=\left[\begin{array}{ccccc}
1 & x_{1,1} & x_{2,1} & \ldots & x_{k, 1} \\
1 & x_{1,2} & x_{2,2} & \ldots & x_{k, 2} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{1, T} & x_{2, T} & \ldots & x_{k, T}
\end{array}\right] .
$$

Then

$$
y=x \beta+\varepsilon .
$$

Matrix formulation

Least squares estimation

Minimize: $(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})$

Matrix formulation

Least squares estimation

Minimize: $(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})$
Differentiate wrt β gives

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

Matrix formulation

Least squares estimation

Minimize: $(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta})$
Differentiate wrt β gives

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

(The "normal equation".)

Matrix formulation

Least squares estimation

Minimize: $(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})$
Differentiate wrt β gives

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

(The "normal equation".)

$$
\hat{\sigma}^{2}=\frac{1}{T-k-1}(\boldsymbol{y}-\boldsymbol{x} \hat{\boldsymbol{\beta}})^{\prime}(\boldsymbol{y}-\boldsymbol{x} \hat{\boldsymbol{\beta}})
$$

Note: If you fall for the dummy variable trap, $\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)$ is a singular matrix.

Likelihood

If the errors are iid and normally distributed, then

$$
\boldsymbol{y} \sim \mathrm{N}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) .
$$

Likelihood

If the errors are iid and normally distributed, then

$$
\boldsymbol{y} \sim \mathrm{N}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) .
$$

So the likelihood is

$$
L=\frac{1}{\sigma^{T}(2 \pi)^{T / 2}} \exp \left(-\frac{1}{2 \sigma^{2}}(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta})\right)
$$

Likelihood

If the errors are iid and normally distributed, then

$$
\boldsymbol{y} \sim \mathrm{N}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right) .
$$

So the likelihood is

$$
L=\frac{1}{\sigma^{\top}(2 \pi)^{T / 2}} \exp \left(-\frac{1}{2 \sigma^{2}}(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta})\right)
$$

which is maximized when $(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})$ is minimized.

Likelihood

If the errors are iid and normally distributed, then

$$
\boldsymbol{y} \sim \mathrm{N}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) .
$$

So the likelihood is

$$
L=\frac{1}{\sigma^{\top}(2 \pi)^{T / 2}} \exp \left(-\frac{1}{2 \sigma^{2}}(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta})\right)
$$

which is maximized when $(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})$ is minimized.
So MLE = OLS.

Multiple regression forecasts

Optimal forecasts

$$
\hat{y}^{*}=\mathrm{E}\left(\boldsymbol{y}^{*} \mid \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{x}^{*}\right)=\boldsymbol{x}^{*} \hat{\boldsymbol{\beta}}=\boldsymbol{x}^{*}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}
$$

where \boldsymbol{x}^{*} is a row vector containing the values of the predictors for the forecasts (in the same format as $X)$.

Multiple regression forecasts

Optimal forecasts

$$
\hat{y}^{*}=\mathrm{E}\left(\boldsymbol{y}^{*} \mid \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{x}^{*}\right)=\boldsymbol{x}^{*} \hat{\boldsymbol{\beta}}=\boldsymbol{x}^{*}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}
$$

where \boldsymbol{x}^{*} is a row vector containing the values of the predictors for the forecasts (in the same format as $X)$.

Forecast variance

$$
\operatorname{Var}\left(\boldsymbol{y}^{*} \mid \boldsymbol{X}, \boldsymbol{x}^{*}\right)=\sigma^{2}\left[1+\boldsymbol{x}^{*}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\left(\boldsymbol{x}^{*}\right)^{\prime}\right]
$$

Multiple regression forecasts

Optimal forecasts

$$
\hat{y}^{*}=\mathrm{E}\left(\boldsymbol{y}^{*} \mid \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{x}^{*}\right)=\boldsymbol{x}^{*} \hat{\boldsymbol{\beta}}=\boldsymbol{x}^{*}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}
$$

where \boldsymbol{x}^{*} is a row vector containing the values of the predictors for the forecasts (in the same format as $X)$.

Forecast variance

$$
\operatorname{Var}\left(\boldsymbol{y}^{*} \mid \boldsymbol{X}, \boldsymbol{x}^{*}\right)=\sigma^{2}\left[1+\boldsymbol{x}^{*}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\left(\boldsymbol{x}^{*}\right)^{\prime}\right]
$$

- This ignores any errors in \boldsymbol{x}^{*}.
- 95% prediction intervals assuming normal errors:

$$
\hat{y}^{*} \pm 1.96 \sqrt{\operatorname{Var}\left(\boldsymbol{y}^{*} \mid \boldsymbol{X}, \boldsymbol{x}^{*}\right)} .
$$

Outline

1 The linear model with time series
2 Some useful predictors for linear models
3 Residual diagnostics
4 Selecting predictors and forecast evaluation
5 Forecasting with regression
6 Matrix formulation
7 Correlation, causation and forecasting

Correlation is not causation

- When x is useful for predicting y, it is not necessarily causing y.
- e.g., predict number of drownings y using number of ice-creams sold x.
- Correlations are useful for forecasting, even when there is no causality.
- Better models usually involve causal relationships (e.g., temperature x and people z to predict drownings y).

Multicollinearity

In regression analysis, multicollinearity occurs when:
■ Two predictors are highly correlated (i.e., the correlation between them is close to ± 1).

- A linear combination of some of the predictors is highly correlated with another predictor.
- A linear combination of one subset of predictors is highly correlated with a linear combination of another subset of predictors.

Multicollinearity

If multicollinearity exists...

- the numerical estimates of coefficients may be wrong (worse in Excel than in a statistics package)
- don't rely on the p-values to determine significance.
- there is no problem with model predictions provided the predictors used for forecasting are within the range used for fitting.
- omitting variables can help.
- combining variables can help.

