
Predictive Analytics

Ch9. ARIMA models

Prof. Dr. Benjamin Buchwitz

ARIMA models

AR: autoregressive (lagged observations as inputs)
I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

An ARIMA model is rarely interpretable in terms of visible data structures like trend and seasonality. But
it can capture a huge range of time series patterns.

2

ARIMA models

AR: autoregressive (lagged observations as inputs)
I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

An ARIMA model is rarely interpretable in terms of visible data structures like trend and seasonality. But
it can capture a huge range of time series patterns.

2

Outline

1 Stationarity and differencing

2 Non-seasonal ARIMA models

3 Estimation and order selection

4 ARIMA modelling in R

5 Forecasting

6 Seasonal ARIMA models

7 ARIMA vs ETS

3

Stationarity

Definition
If {yt} is a stationary time series, then for all s, the distribution of (yt, . . . , yt+s) does not depend on t.

A stationary series is:

roughly horizontal
constant variance
no patterns predictable in the long-term

4

Stationarity

Definition
If {yt} is a stationary time series, then for all s, the distribution of (yt, . . . , yt+s) does not depend on t.

A stationary series is:

roughly horizontal
constant variance
no patterns predictable in the long-term

4

Stationary?

gafa_stock %>%
filter(Symbol == "GOOG", year(Date) == 2018) %>%
autoplot(Close) +
labs(y = "Google closing stock price", x = "Day")

1000

1100

1200

Jan 2018 Apr 2018 Jul 2018 Okt 2018 Jan 2019
Day

G
oo

gl
e

cl
os

in
g

st
oc

k
pr

ic
e

5

Stationary?

gafa_stock %>%
filter(Symbol == "GOOG", year(Date) == 2018) %>%
autoplot(difference(Close)) +
labs(y = "Google closing stock price", x = "Day")

−60

−30

0

30

60

Jan 2018 Apr 2018 Jul 2018 Okt 2018 Jan 2019
Day

G
oo

gl
e

cl
os

in
g

st
oc

k
pr

ic
e

6

Stationary?

global_economy %>%
filter(Country == "Algeria") %>%
autoplot(Exports) +
labs(y = "% of GDP", title = "Algerian Exports")

20

30

40

50

1960 1980 2000
Year [1Y]

%
 o

f G
D

P

Algerian Exports

7

Stationary?

aus_production %>%
autoplot(Bricks) +
labs(title = "Clay brick production in Australia")

200

300

400

500

600

1960 Q1 1980 Q1 2000 Q1
Quarter [1Q]

B
ric

ks

Clay brick production in Australia

8

Stationary?

prices %>%
filter(year >= 1900) %>%
autoplot(eggs) +
labs(y="$US (1993)", title="Price of a dozen eggs")

100

200

300

1900 1925 1950 1975 2000
year [1Y]

$U
S

 (
19

93
)

Price of a dozen eggs

9

Stationary?

aus_livestock %>%
filter(
Animal == "Pigs", State == "Victoria",

) %>%
autoplot(Count/1e3) +
labs(y = "thousands", title = "Total pigs slaughtered in Victoria")

40

80

120

160

1980 Jan 1990 Jan 2000 Jan 2010 Jan 2020 Jan
Month [1M]

th
ou

sa
nd

s

Total pigs slaughtered in Victoria

10

Stationary?

aus_livestock %>%
filter(
Animal == "Pigs", State == "Victoria", year(Month) >= 2010

) %>%
autoplot(Count/1e3) +
labs(y = "thousands", title = "Total pigs slaughtered in Victoria")

60

80

100

2010 Jan 2012 Jan 2014 Jan 2016 Jan 2018 Jan
Month [1M]

th
ou

sa
nd

s

Total pigs slaughtered in Victoria

11

Stationary?

aus_livestock %>%
filter(
Animal == "Pigs", State == "Victoria", year(Month) >= 2015

) %>%
autoplot(Count/1e3) +
labs(y = "thousands", title = "Total pigs slaughtered in Victoria")

90

100

110

2015 Jan 2016 Jan 2017 Jan 2018 Jan 2019 Jan
Month [1M]

th
ou

sa
nd

s

Total pigs slaughtered in Victoria

12

Stationary?

pelt %>%
autoplot(Lynx) +
labs(y = "Number trapped",

title = "Annual Canadian Lynx Trappings")

0

20000

40000

60000

80000

1860 1880 1900 1920
Year [1Y]

N
um

be
r

tr
ap

pe
d

Annual Canadian Lynx Trappings

13

Stationarity

Definition
If {yt} is a stationary time series, then for all s, the distribution of (yt, . . . , yt+s) does not depend on t.

Transformations help to stabilize the variance.

For ARIMA modelling, we also need to stabilize the mean.

14

Stationarity

Definition
If {yt} is a stationary time series, then for all s, the distribution of (yt, . . . , yt+s) does not depend on t.

Transformations help to stabilize the variance.

For ARIMA modelling, we also need to stabilize the mean.

14

Non-stationarity in the mean

Identifying non-stationary series

time plot.
The ACF of stationary data drops to zero relatively quickly
The ACF of non-stationary data decreases slowly.
For non-stationary data, the value of r1 is often large and positive.

15

Example: Google stock price

google_2018 <- gafa_stock %>%
filter(Symbol == "GOOG", year(Date) == 2018) %>%
mutate(trading_day = row_number()) %>%
update_tsibble(index = trading_day, regular = TRUE)

16

Example: Google stock price

google_2018 %>%
autoplot(Close) +
labs(y = "Closing stock price ($USD)")

1000

1100

1200

0 50 100 150 200 250
trading_day [1]

C
lo

si
ng

 s
to

ck
 p

ric
e

($
U

S
D

)

17

Example: Google stock price

google_2018 %>% ACF(Close) %>% autoplot()

0.00

0.25

0.50

0.75

1.00

5 10 15 20
lag [1]

ac
f

18

Example: Google stock price

google_2018 %>%
autoplot(difference(Close)) +
labs(y = "Change in Google closing stock price ($USD)")

−60

−30

0

30

60

0 50 100 150 200 250
trading_day [1]

C
ha

ng
e

in
 G

oo
gl

e
cl

os
in

g
st

oc
k

pr
ic

e
($

U
S

D
)

19

Example: Google stock price

google_2018 %>% ACF(difference(Close)) %>% autoplot()

−0.15

−0.10

−0.05

0.00

0.05

0.10

5 10 15 20
lag [1]

ac
f

20

Differencing

Differencing helps to stabilize the mean.
The differenced series is the change between each observation in the original series: y′

t = yt − yt−1.
The differenced series will have only T − 1 values since it is not possible to calculate a difference y′

1

for the first observation.

21

Second-order differencing

Occasionally the differenced data will not appear stationary and it may be necessary to difference the
data a second time:

y′′
t = y′

t − y′
t−1

= (yt − yt−1) − (yt−1 − yt−2)

= yt − 2yt−1 + yt−2.

y′′
t will have T − 2 values.
In practice, it is almost never necessary to go beyond second-order differences.

22

Second-order differencing

Occasionally the differenced data will not appear stationary and it may be necessary to difference the
data a second time:

y′′
t = y′

t − y′
t−1

= (yt − yt−1) − (yt−1 − yt−2)

= yt − 2yt−1 + yt−2.

y′′
t will have T − 2 values.
In practice, it is almost never necessary to go beyond second-order differences.

22

Second-order differencing

Occasionally the differenced data will not appear stationary and it may be necessary to difference the
data a second time:

y′′
t = y′

t − y′
t−1

= (yt − yt−1) − (yt−1 − yt−2)

= yt − 2yt−1 + yt−2.

y′′
t will have T − 2 values.
In practice, it is almost never necessary to go beyond second-order differences.

22

Seasonal differencing

A seasonal difference is the difference between an observation and the corresponding observation from
the previous year.

y′
t = yt − yt−m

wherem = number of seasons.

For monthly datam = 12.
For quarterly datam = 4.

23

Seasonal differencing

A seasonal difference is the difference between an observation and the corresponding observation from
the previous year.

y′
t = yt − yt−m

wherem = number of seasons.

For monthly datam = 12.
For quarterly datam = 4.

23

Seasonal differencing

A seasonal difference is the difference between an observation and the corresponding observation from
the previous year.

y′
t = yt − yt−m

wherem = number of seasons.

For monthly datam = 12.
For quarterly datam = 4.

23

Antidiabetic drug sales

a10 <- PBS %>%
filter(ATC2 == "A10") %>%
summarise(Cost = sum(Cost)/1e6)

24

Antidiabetic drug sales

a10 %>% autoplot(
Cost

)

10

20

30

1995 Jan 2000 Jan 2005 Jan
Month [1M]

C
os

t

25

Antidiabetic drug sales

a10 %>% autoplot(
log(Cost)

)

1.0

1.5

2.0

2.5

3.0

3.5

1995 Jan 2000 Jan 2005 Jan
Month [1M]

lo
g(

C
os

t)

26

Antidiabetic drug sales

a10 %>% autoplot(
log(Cost) %>% difference(12)

)

−0.1

0.0

0.1

0.2

0.3

1995 Jan 2000 Jan 2005 Jan
Month [1M]

lo
g(

C
os

t)
 %

>
%

 d
iff

er
en

ce
(1

2)

27

Cortecosteroid drug sales

h02 <- PBS %>%
filter(ATC2 == "H02") %>%
summarise(Cost = sum(Cost)/1e6)

28

Cortecosteroid drug sales

h02 %>% autoplot(
Cost

)

0.50

0.75

1.00

1.25

1995 Jan 2000 Jan 2005 Jan
Month [1M]

C
os

t

29

Cortecosteroid drug sales

h02 %>% autoplot(
log(Cost)

)

−0.8

−0.4

0.0

1995 Jan 2000 Jan 2005 Jan
Month [1M]

lo
g(

C
os

t)

30

Cortecosteroid drug sales

h02 %>% autoplot(
log(Cost) %>% difference(12)

)

0.0

0.2

0.4

1995 Jan 2000 Jan 2005 Jan
Month [1M]

lo
g(

C
os

t)
 %

>
%

 d
iff

er
en

ce
(1

2)

31

Cortecosteroid drug sales

h02 %>% autoplot(
log(Cost) %>% difference(12) %>% difference(1)

)

−0.2

0.0

0.2

0.4

1995 Jan 2000 Jan 2005 Jan
Month [1M]

lo
g(

C
os

t)
 %

>
%

 d
iff

er
en

ce
(1

2)
 %

>
%

 d
iff

er
en

ce
(1

)

32

Cortecosteroid drug sales

Seasonally differenced series is closer to being stationary.
Remaining non-stationarity can be removed with further first difference.

If y′
t = yt − yt−12 denotes seasonally differenced series, then twice-differenced series is

y∗
t = y′

t − y′
t−1

= (yt − yt−12) − (yt−1 − yt−13)

= yt − yt−1 − yt−12 + yt−13 .

33

Seasonal differencing

When both seasonal and first differences are applied. . .

it makes no difference which is done first—the result will be the same.
If seasonality is strong, we recommend that seasonal differencing be done first because sometimes
the resulting series will be stationary and there will be no need for further first difference.

It is important that if differencing is used, the differences are interpretable.

34

Seasonal differencing

When both seasonal and first differences are applied. . .

it makes no difference which is done first—the result will be the same.
If seasonality is strong, we recommend that seasonal differencing be done first because sometimes
the resulting series will be stationary and there will be no need for further first difference.

It is important that if differencing is used, the differences are interpretable.

34

Seasonal differencing

When both seasonal and first differences are applied. . .

it makes no difference which is done first—the result will be the same.
If seasonality is strong, we recommend that seasonal differencing be done first because sometimes
the resulting series will be stationary and there will be no need for further first difference.

It is important that if differencing is used, the differences are interpretable.

34

Interpretation of differencing

first differences are the change between one observation and the next;
seasonal differences are the change between one year to the next.

But taking lag 3 differences for yearly data, for example, results in a model which cannot be sensibly
interpreted.

35

Interpretation of differencing

first differences are the change between one observation and the next;
seasonal differences are the change between one year to the next.

But taking lag 3 differences for yearly data, for example, results in a model which cannot be sensibly
interpreted.

35

Unit root tests

Statistical tests to determine the required order of differencing.

1 Augmented Dickey Fuller test: null hypothesis is that the data are non-stationary and non-seasonal.
2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are stationary and

non-seasonal.
3 Other tests available for seasonal data.

36

KPSS test

google_2018 %>%
features(Close, unitroot_kpss)

A tibble: 1 x 3
Symbol kpss_stat kpss_pvalue
<chr> <dbl> <dbl>
1 GOOG 0.573 0.0252

google_2018 %>%
features(Close, unitroot_ndiffs)

A tibble: 1 x 2
Symbol ndiffs
<chr> <int>
1 GOOG 1

37

KPSS test

google_2018 %>%
features(Close, unitroot_kpss)

A tibble: 1 x 3
Symbol kpss_stat kpss_pvalue
<chr> <dbl> <dbl>
1 GOOG 0.573 0.0252

google_2018 %>%
features(Close, unitroot_ndiffs)

A tibble: 1 x 2
Symbol ndiffs
<chr> <int>
1 GOOG 1

37

Automatically selecting differences

STL decomposition: yt = Tt + St + Rt

Seasonal strength Fs = max
(
0, 1 − Var(Rt)

Var(St+Rt)

)
If Fs > 0.64, do one seasonal difference.

h02 %>% mutate(log_sales = log(Cost)) %>%
features(log_sales, list(unitroot_nsdiffs, feat_stl))

A tibble: 1 x 10
nsdiffs trend_strength seasonal_streng~ seasonal_peak_y~ seasonal_trough~
<int> <dbl> <dbl> <dbl> <dbl>
1 1 0.957 0.955 6 8
... with 5 more variables: spikiness <dbl>, linearity <dbl>,
curvature <dbl>, stl_e_acf1 <dbl>, stl_e_acf10 <dbl>

38

Automatically selecting differences

h02 %>% mutate(log_sales = log(Cost)) %>%
features(log_sales, unitroot_nsdiffs)

A tibble: 1 x 1
nsdiffs
<int>
1 1

h02 %>% mutate(d_log_sales = difference(log(Cost), 12)) %>%
features(d_log_sales, unitroot_ndiffs)

A tibble: 1 x 1
ndiffs
<int>
1 1

39

Backshift notation

A very useful notational device is the backward shift operator, B, which is used as follows:
Byt = yt−1

In other words, B, operating on yt, has the effect of shifting the data back one period. Two applications
of B to yt shifts the data back two periods:

B(Byt) = B2yt = yt−2

For monthly data, if we wish to shift attention to “the same month last year”, then B12 is used, and the
notation is B12yt = yt−12.

40

Backshift notation

A very useful notational device is the backward shift operator, B, which is used as follows:
Byt = yt−1

In other words, B, operating on yt, has the effect of shifting the data back one period.

Two applications
of B to yt shifts the data back two periods:

B(Byt) = B2yt = yt−2

For monthly data, if we wish to shift attention to “the same month last year”, then B12 is used, and the
notation is B12yt = yt−12.

40

Backshift notation

A very useful notational device is the backward shift operator, B, which is used as follows:
Byt = yt−1

In other words, B, operating on yt, has the effect of shifting the data back one period. Two applications
of B to yt shifts the data back two periods:

B(Byt) = B2yt = yt−2

For monthly data, if we wish to shift attention to “the same month last year”, then B12 is used, and the
notation is B12yt = yt−12.

40

Backshift notation

A very useful notational device is the backward shift operator, B, which is used as follows:
Byt = yt−1

In other words, B, operating on yt, has the effect of shifting the data back one period. Two applications
of B to yt shifts the data back two periods:

B(Byt) = B2yt = yt−2

For monthly data, if we wish to shift attention to “the same month last year”, then B12 is used, and the
notation is B12yt = yt−12.

40

Backshift notation

The backward shift operator is convenient for describing the process of differencing.

A first difference
can be written as

y′
t = yt − yt−1 = yt − Byt = (1 − B)yt

Note that a first difference is represented by (1 − B).

Similarly, if second-order differences (i.e., first differences of first differences) have to be computed, then:
y′′
t = yt − 2yt−1 + yt−2 = (1 − B)2yt

41

Backshift notation

The backward shift operator is convenient for describing the process of differencing. A first difference
can be written as

y′
t = yt − yt−1 = yt − Byt = (1 − B)yt

Note that a first difference is represented by (1 − B).

Similarly, if second-order differences (i.e., first differences of first differences) have to be computed, then:
y′′
t = yt − 2yt−1 + yt−2 = (1 − B)2yt

41

Backshift notation

The backward shift operator is convenient for describing the process of differencing. A first difference
can be written as

y′
t = yt − yt−1 = yt − Byt = (1 − B)yt

Note that a first difference is represented by (1 − B).

Similarly, if second-order differences (i.e., first differences of first differences) have to be computed, then:
y′′
t = yt − 2yt−1 + yt−2 = (1 − B)2yt

41

Backshift notation

The backward shift operator is convenient for describing the process of differencing. A first difference
can be written as

y′
t = yt − yt−1 = yt − Byt = (1 − B)yt

Note that a first difference is represented by (1 − B).

Similarly, if second-order differences (i.e., first differences of first differences) have to be computed, then:
y′′
t = yt − 2yt−1 + yt−2 = (1 − B)2yt

41

Backshift notation

Second-order difference is denoted (1 − B)2.
Second-order difference is not the same as a second difference, which would be denoted 1 − B2;
In general, a dth-order difference can be written as

(1 − B)dyt

A seasonal difference followed by a first difference can be written as
(1 − B)(1 − Bm)yt

42

Backshift notation

The “backshift” notation is convenient because the terms can be multiplied together to see the
combined effect.

(1 − B)(1 − Bm)yt = (1 − B − Bm + Bm+1)yt
= yt − yt−1 − yt−m + yt−m−1.

For monthly data,m = 12 and we obtain the same result as earlier.

43

Backshift notation

The “backshift” notation is convenient because the terms can be multiplied together to see the
combined effect.

(1 − B)(1 − Bm)yt = (1 − B − Bm + Bm+1)yt
= yt − yt−1 − yt−m + yt−m−1.

For monthly data,m = 12 and we obtain the same result as earlier.

43

Outline

1 Stationarity and differencing

2 Non-seasonal ARIMA models

3 Estimation and order selection

4 ARIMA modelling in R

5 Forecasting

6 Seasonal ARIMA models

7 ARIMA vs ETS

44

Autoregressive models

Autoregressive (AR) models:

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + εt,

where εt is white noise. This is a multiple regression with lagged values of yt as predictors.

8

10

12

0 25 50 75 100
idx [1]

AR(1)

15.0

17.5

20.0

22.5

25.0

0 25 50 75 100
idx [1]

AR(2)

45

AR(1) model

yt = 18 − 0.8yt−1 + εt

εt ∼ N(0, 1), T = 100.

8

10

12

0 25 50 75 100
idx [1]

AR(1)

46

AR(1) model

yt = c + ϕ1yt−1 + εt

When ϕ1 = 0, yt is equivalent to WN
When ϕ1 = 1 and c = 0, yt is equivalent to a RW
When ϕ1 = 1 and c ̸= 0, yt is equivalent to a RW with drift
When ϕ1 < 0, yt tends to oscillate between positive and negative values.

47

AR(2) model

yt = 8 + 1.3yt−1 − 0.7yt−2 + εt

εt ∼ N(0, 1), T = 100.

15.0

17.5

20.0

22.5

25.0

0 25 50 75 100
idx [1]

AR(2)

48

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then
some constraints on the values of the parameters are required.
General condition for stationarity

Complex roots of 1 − ϕ1z − ϕ2z2 − · · · − ϕpzp lie outside the unit circle on
the complex plane.

For p = 1: −1 < ϕ1 < 1.
For p = 2:
−1 < ϕ2 < 1 ϕ2 + ϕ1 < 1 ϕ2 − ϕ1 < 1.
More complicated conditions hold for p ≥ 3.
Estimation software takes care of this.

49

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then
some constraints on the values of the parameters are required.
General condition for stationarity

Complex roots of 1 − ϕ1z − ϕ2z2 − · · · − ϕpzp lie outside the unit circle on
the complex plane.

For p = 1: −1 < ϕ1 < 1.
For p = 2:
−1 < ϕ2 < 1 ϕ2 + ϕ1 < 1 ϕ2 − ϕ1 < 1.
More complicated conditions hold for p ≥ 3.
Estimation software takes care of this.

49

Moving Average (MA) models

Moving Average (MA) models:

yt = c + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q,

where εt is white noise. This is a multiple regression with past errors as predictors. Don’t confuse this
with moving average smoothing!

18

20

22

0 25 50 75 100
idx [1]

MA(1)

−5.0

−2.5

0.0

2.5

0 25 50 75 100
idx [1]

MA(2)

50

MA(1) model

yt = 20 + εt + 0.8εt−1

εt ∼ N(0, 1), T = 100.

18

20

22

0 25 50 75 100
idx [1]

MA(1)

51

MA(2) model

yt = εt − εt−1 + 0.8εt−2

εt ∼ N(0, 1), T = 100.

−5.0

−2.5

0.0

2.5

0 25 50 75 100
idx [1]

MA(2)

52

MA(∞) models

It is possible to write any stationary AR(p) process as an MA(∞) process.

Example: AR(1)
yt = ϕ1yt−1 + εt

= ϕ1(ϕ1yt−2 + εt−1) + εt

= ϕ2
1yt−2 + ϕ1εt−1 + εt

= ϕ3
1yt−3 + ϕ2

1εt−2 + ϕ1εt−1 + εt

. . .

Provided −1 < ϕ1 < 1:
yt = εt + ϕ1εt−1 + ϕ2

1εt−2 + ϕ3
1εt−3 + · · ·

53

MA(∞) models

It is possible to write any stationary AR(p) process as an MA(∞) process.

Example: AR(1)
yt = ϕ1yt−1 + εt

= ϕ1(ϕ1yt−2 + εt−1) + εt

= ϕ2
1yt−2 + ϕ1εt−1 + εt

= ϕ3
1yt−3 + ϕ2

1εt−2 + ϕ1εt−1 + εt

. . .

Provided −1 < ϕ1 < 1:
yt = εt + ϕ1εt−1 + ϕ2

1εt−2 + ϕ3
1εt−3 + · · ·

53

Invertibility

Any MA(q) process can be written as an AR(∞) process if we impose some constraints on the MA
parameters.
Then the MA model is called “invertible”.
Invertible models have some mathematical properties that make them easier to use in practice.
Invertibility of an ARIMA model is equivalent to forecastability of an ETS model.

54

Invertibility

General condition for invertibility

Complex roots of 1 + θ1z + θ2z2 + · · · + θqzq lie outside the unit circle on the complex plane.

For q = 1: −1 < θ1 < 1.
For q = 2:
−1 < θ2 < 1 θ2 + θ1 > −1 θ1 − θ2 < 1.
More complicated conditions hold for q ≥ 3.
Estimation software takes care of this.

55

Invertibility

General condition for invertibility

Complex roots of 1 + θ1z + θ2z2 + · · · + θqzq lie outside the unit circle on the complex plane.

For q = 1: −1 < θ1 < 1.
For q = 2:
−1 < θ2 < 1 θ2 + θ1 > −1 θ1 − θ2 < 1.
More complicated conditions hold for q ≥ 3.
Estimation software takes care of this.

55

ARIMA models

Autoregressive Moving Average models:

yt = c + ϕ1yt−1 + · · · + ϕpyt−p

+ θ1εt−1 + · · · + θqεt−q + εt.

Predictors include both lagged values of yt and lagged errors.
Conditions on coefficients ensure stationarity.
Conditions on coefficients ensure invertibility.

Autoregressive Integrated Moving Average models
Combine ARMA model with differencing.
(1 − B)dyt follows an ARMA model.

56

ARIMA models

Autoregressive Moving Average models:

yt = c + ϕ1yt−1 + · · · + ϕpyt−p

+ θ1εt−1 + · · · + θqεt−q + εt.

Predictors include both lagged values of yt and lagged errors.
Conditions on coefficients ensure stationarity.
Conditions on coefficients ensure invertibility.

Autoregressive Integrated Moving Average models
Combine ARMA model with differencing.
(1 − B)dyt follows an ARMA model.

56

ARIMA models

Autoregressive Moving Average models:

yt = c + ϕ1yt−1 + · · · + ϕpyt−p

+ θ1εt−1 + · · · + θqεt−q + εt.

Predictors include both lagged values of yt and lagged errors.
Conditions on coefficients ensure stationarity.
Conditions on coefficients ensure invertibility.

Autoregressive Integrated Moving Average models
Combine ARMA model with differencing.
(1 − B)dyt follows an ARMA model.

56

ARIMA models

Autoregressive Integrated Moving Average models

ARIMA(p, d, q) model

AR: p = order of the autoregressive part
I: d = degree of first differencing involved

MA: q = order of the moving average part.

White noise model: ARIMA(0,0,0)
Random walk: ARIMA(0,1,0) with no constant
Random walk with drift: ARIMA(0,1,0) with const.
AR(p): ARIMA(p,0,0)
MA(q): ARIMA(0,0,q)

57

Backshift notation for ARIMA

ARMA model:
yt = c + ϕ1Byt + · · · + ϕpBpyt + εt + θ1Bεt + · · · + θqBqεt

or (1 − ϕ1B − · · · − ϕpBp)yt = c + (1 + θ1B + · · · + θqBq)εt

ARIMA(1,1,1) model:

(1 − ϕ1B) (1 − B)yt = c + (1 + θ1B)εt
↑ ↑ ↑

AR(1) First MA(1)
difference

Written out:
yt = c + yt−1 + ϕ1yt−1 − ϕ1yt−2 + θ1εt−1 + εt

58

Backshift notation for ARIMA

ARMA model:
yt = c + ϕ1Byt + · · · + ϕpBpyt + εt + θ1Bεt + · · · + θqBqεt

or (1 − ϕ1B − · · · − ϕpBp)yt = c + (1 + θ1B + · · · + θqBq)εt

ARIMA(1,1,1) model:

(1 − ϕ1B) (1 − B)yt = c + (1 + θ1B)εt
↑ ↑ ↑

AR(1) First MA(1)
difference

Written out:
yt = c + yt−1 + ϕ1yt−1 − ϕ1yt−2 + θ1εt−1 + εt

58

R model

Intercept form

(1 − ϕ1B − · · · − ϕpBp)y′
t = c + (1 + θ1B + · · · + θqBq)εt

Mean form

(1 − ϕ1B − · · · − ϕpBp)(y′
t − µ) = (1 + θ1B + · · · + θqBq)εt

y′
t = (1 − B)dyt

µ is the mean of y′
t.

c = µ(1 − ϕ1 − · · · − ϕp).
fable uses intercept form

59

Egyptian exports

global_economy %>%
filter(Code == "EGY") %>%
autoplot(Exports) +
labs(y = "% of GDP", title = "Egyptian Exports")

10

15

20

25

30

1960 1980 2000
Year [1Y]

%
 o

f G
D

P

Egyptian Exports

60

Egyptian exports

fit <- global_economy %>% filter(Code == "EGY") %>%
model(ARIMA(Exports))

report(fit)

Series: Exports
Model: ARIMA(2,0,1) w/ mean
##
Coefficients:
ar1 ar2 ma1 constant
1.676 -0.8034 -0.690 2.562
s.e. 0.111 0.0928 0.149 0.116
##
sigma^2 estimated as 8.046: log likelihood=-142
AIC=293 AICc=294 BIC=303

ARIMA(2,0,1) model:

yt = 2.56 + 1.68yt−1 − 0.80yt−2 − 0.69εt−1 + εt,

where εt is white noise with a standard deviation of 2.837 =
√
8.046.

61

Egyptian exports

fit <- global_economy %>% filter(Code == "EGY") %>%
model(ARIMA(Exports))

report(fit)

Series: Exports
Model: ARIMA(2,0,1) w/ mean
##
Coefficients:
ar1 ar2 ma1 constant
1.676 -0.8034 -0.690 2.562
s.e. 0.111 0.0928 0.149 0.116
##
sigma^2 estimated as 8.046: log likelihood=-142
AIC=293 AICc=294 BIC=303

ARIMA(2,0,1) model:

yt = 2.56 + 1.68yt−1 − 0.80yt−2 − 0.69εt−1 + εt,

where εt is white noise with a standard deviation of 2.837 =
√
8.046.

61

Egyptian exports

gg_tsresiduals(fit)

−6

−3

0

3

6

1960 1980 2000
Year

In
no

va
tio

n
re

si
du

al
s

−0.2

−0.1

0.0

0.1

0.2

4 8 12 16
lag [1Y]

ac
f

0

5

10

15

−4 0 4
.resid

co
un

t

62

Egyptian exports

augment(fit) %>%
features(.innov, ljung_box, lag = 10, dof = 4)

A tibble: 1 x 4
Country .model lb_stat lb_pvalue
<fct> <chr> <dbl> <dbl>
1 Egypt, Arab Rep. ARIMA(Exports) 5.78 0.448

63

Egyptian exports

fit %>% forecast(h=10) %>%
autoplot(global_economy) +
labs(y = "% of GDP", title = "Egyptian Exports")

10

15

20

25

30

1960 1980 2000 2020
Year

%
 o

f G
D

P level

80

95

Egyptian Exports

Figure 1: Forecasts of Egyptian exports.

64

Understanding ARIMA models

If c = 0 and d = 0, the long-term forecasts will go to zero.
If c = 0 and d = 1, the long-term forecasts will go to a non-zero
constant.
If c = 0 and d = 2, the long-term forecasts will follow a straight line.
If c ̸= 0 and d = 0, the long-term forecasts will go to the mean of the
data.
If c ̸= 0 and d = 1, the long-term forecasts will follow a straight line.
If c ̸= 0 and d = 2, the long-term forecasts will follow a quadratic trend.

65

Understanding ARIMA models

Forecast variance and d

The higher the value of d, the more rapidly the prediction intervals
increase in size.
For d = 0, the long-term forecast standard deviation will go to the
standard deviation of the historical data.

Cyclic behaviour

For cyclic forecasts, p ≥ 2 and some restrictions on coefficients are
required.
If p = 2, we need ϕ2

1 + 4ϕ2 < 0. Then average cycle of length
(2π)/

[
arc cos(−ϕ1(1 − ϕ2)/(4ϕ2))

]
.

66

Outline

1 Stationarity and differencing

2 Non-seasonal ARIMA models

3 Estimation and order selection

4 ARIMA modelling in R

5 Forecasting

6 Seasonal ARIMA models

7 ARIMA vs ETS

67

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters c, ϕ1, . . . , ϕp, θ1, . . . , θq.

MLE is very similar to least squares estimation obtained by minimizing
T∑

t−1

e2t

The ARIMA() function allows CLS or MLE estimation.
Non-linear optimization must be used in either case.
Different software will give different estimates.

68

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters c, ϕ1, . . . , ϕp, θ1, . . . , θq.

MLE is very similar to least squares estimation obtained by minimizing
T∑

t−1

e2t

The ARIMA() function allows CLS or MLE estimation.
Non-linear optimization must be used in either case.
Different software will give different estimates.

68

Partial autocorrelations

Partial autocorrelationsmeasure relationship
between yt and yt−k, when the effects of other time lags — 1, 2, 3, . . . , k − 1 —
are removed.

αk = kth partial autocorrelation coefficient
= equal to the estimate of ϕk in regression:

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕkyt−k + εt.

Varying number of terms on RHS gives αk for different values of k.
α1 = ρ1
same critical values of ±1.96/

√
T as for ACF.

Last significant αk indicates the order of an AR model.

69

Partial autocorrelations

Partial autocorrelationsmeasure relationship
between yt and yt−k, when the effects of other time lags — 1, 2, 3, . . . , k − 1 —
are removed.

αk = kth partial autocorrelation coefficient
= equal to the estimate of ϕk in regression:

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕkyt−k + εt.

Varying number of terms on RHS gives αk for different values of k.
α1 = ρ1
same critical values of ±1.96/

√
T as for ACF.

Last significant αk indicates the order of an AR model.

69

Partial autocorrelations

Partial autocorrelationsmeasure relationship
between yt and yt−k, when the effects of other time lags — 1, 2, 3, . . . , k − 1 —
are removed.

αk = kth partial autocorrelation coefficient
= equal to the estimate of ϕk in regression:

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕkyt−k + εt.

Varying number of terms on RHS gives αk for different values of k.
α1 = ρ1
same critical values of ±1.96/

√
T as for ACF.

Last significant αk indicates the order of an AR model.
69

Egyptian exports

egypt <- global_economy %>% filter(Code == "EGY")
egypt %>% ACF(Exports) %>% autoplot()
egypt %>% PACF(Exports) %>% autoplot()

0.0

0.5

4 8 12 16
lag [1Y]

ac
f

−0.3

0.0

0.3

0.6

4 8 12 16
lag [1Y]

pa
cf

70

Egyptian exports

global_economy %>% filter(Code == "EGY") %>%
gg_tsdisplay(Exports, plot_type='partial')

10

15

20

25

30

1960 1980 2000
Year

E
xp

or
ts

0.0

0.5

4 8 12 16
lag [1Y]

ac
f

0.0

0.5

4 8 12 16
lag [1Y]

pa
cf

71

ACF and PACF interpretation

AR(1)
ρk = ϕk

1 for k = 1, 2, . . . ;

α1 = ϕ1 αk = 0 for k = 2, 3,

So we have an AR(1) model when

autocorrelations exponentially decay
there is a single significant partial autocorrelation.

72

ACF and PACF interpretation

AR(p)

ACF dies out in an exponential or damped sine-wave manner
PACF has all zero spikes beyond the pth spike

So we have an AR(p) model when

the ACF is exponentially decaying or sinusoidal
there is a significant spike at lag p in PACF, but none beyond p

73

ACF and PACF interpretation

MA(1)
ρ1 = θ1/(1 + θ21) ρk = 0 for k = 2, 3, . . . ;

αk = −(−θ1)k/(1 + θ21 + · · · + θ2k1)

So we have an MA(1) model when

the PACF is exponentially decaying and
there is a single significant spike in ACF

74

ACF and PACF interpretation

MA(q)

PACF dies out in an exponential or damped sine-wave manner
ACF has all zero spikes beyond the qth spike

So we have an MA(q) model when

the PACF is exponentially decaying or sinusoidal
there is a significant spike at lag q in ACF, but none beyond q

75

Information criteria

Akaike’s Information Criterion (AIC):
AIC = −2 log(L) + 2(p + q + k + 1),

where L is the likelihood of the data,
k = 1 if c ̸= 0 and k = 0 if c = 0.

Corrected AIC:
AICc = AIC +

2(p + q + k + 1)(p + q + k + 2)
T − p − q − k − 2

.

Bayesian Information Criterion:
BIC = AIC + [log(T) − 2](p + q + k + 1).

Good models are obtained by minimizing either the AIC, AICc or BIC. Our preference is to use the AICc.

76

Information criteria

Akaike’s Information Criterion (AIC):
AIC = −2 log(L) + 2(p + q + k + 1),

where L is the likelihood of the data,
k = 1 if c ̸= 0 and k = 0 if c = 0.

Corrected AIC:
AICc = AIC +

2(p + q + k + 1)(p + q + k + 2)
T − p − q − k − 2

.

Bayesian Information Criterion:
BIC = AIC + [log(T) − 2](p + q + k + 1).

Good models are obtained by minimizing either the AIC, AICc or BIC. Our preference is to use the AICc.

76

Information criteria

Akaike’s Information Criterion (AIC):
AIC = −2 log(L) + 2(p + q + k + 1),

where L is the likelihood of the data,
k = 1 if c ̸= 0 and k = 0 if c = 0.

Corrected AIC:
AICc = AIC +

2(p + q + k + 1)(p + q + k + 2)
T − p − q − k − 2

.

Bayesian Information Criterion:
BIC = AIC + [log(T) − 2](p + q + k + 1).

Good models are obtained by minimizing either the AIC, AICc or BIC. Our preference is to use the AICc.

76

Information criteria

Akaike’s Information Criterion (AIC):
AIC = −2 log(L) + 2(p + q + k + 1),

where L is the likelihood of the data,
k = 1 if c ̸= 0 and k = 0 if c = 0.

Corrected AIC:
AICc = AIC +

2(p + q + k + 1)(p + q + k + 2)
T − p − q − k − 2

.

Bayesian Information Criterion:
BIC = AIC + [log(T) − 2](p + q + k + 1).

Good models are obtained by minimizing either the AIC, AICc or BIC. Our preference is to use the AICc.

76

Outline

1 Stationarity and differencing

2 Non-seasonal ARIMA models

3 Estimation and order selection

4 ARIMA modelling in R

5 Forecasting

6 Seasonal ARIMA models

7 ARIMA vs ETS

77

How does ARIMA() work?

A non-seasonal ARIMA process

ϕ(B)(1 − B)dyt = c + θ(B)εt
Need to select appropriate orders: p, q, d

Hyndman and Khandakar (JSS, 2008) algorithm:

Select no. differences d and D via KPSS test and seasonal strength measure.
Select p, q by minimising AICc.
Use stepwise search to traverse model space.

78

How does ARIMA() work?

AICc = −2 log(L) + 2(p + q + k + 1)
[
1 + (p+q+k+2)

T−p−q−k−2

]
.

where L is the maximised likelihood fitted to the differenced data, k = 1 if c ̸= 0 and
k = 0 otherwise.

Step1: Select current model (with smallest AICc) from:
ARIMA(2, d, 2)
ARIMA(0, d, 0)
ARIMA(1, d, 0)
ARIMA(0, d, 1)

Step 2: Consider variations of current model:
vary one of p, q, from current model by ±1;
p, q both vary from current model by ±1;
Include/exclude c from current model.

Model with lowest AICc becomes current model.
Repeat Step 2 until no lower AICc can be found.

79

How does ARIMA() work?

AICc = −2 log(L) + 2(p + q + k + 1)
[
1 + (p+q+k+2)

T−p−q−k−2

]
.

where L is the maximised likelihood fitted to the differenced data, k = 1 if c ̸= 0 and
k = 0 otherwise.

Step1: Select current model (with smallest AICc) from:
ARIMA(2, d, 2)
ARIMA(0, d, 0)
ARIMA(1, d, 0)
ARIMA(0, d, 1)

Step 2: Consider variations of current model:
vary one of p, q, from current model by ±1;
p, q both vary from current model by ±1;
Include/exclude c from current model.

Model with lowest AICc becomes current model.
Repeat Step 2 until no lower AICc can be found.

79

How does ARIMA() work?

AICc = −2 log(L) + 2(p + q + k + 1)
[
1 + (p+q+k+2)

T−p−q−k−2

]
.

where L is the maximised likelihood fitted to the differenced data, k = 1 if c ̸= 0 and
k = 0 otherwise.

Step1: Select current model (with smallest AICc) from:
ARIMA(2, d, 2)
ARIMA(0, d, 0)
ARIMA(1, d, 0)
ARIMA(0, d, 1)

Step 2: Consider variations of current model:
vary one of p, q, from current model by ±1;
p, q both vary from current model by ±1;
Include/exclude c from current model.

Model with lowest AICc becomes current model.
Repeat Step 2 until no lower AICc can be found. 79

How does ARIMA() work?

0 1 2 3 4 5 6

0

1

2

3

4

5

6

q

p

step

1

80

How does ARIMA() work?

0 1 2 3 4 5 6

0

1

2

3

4

5

6

q

p

step

1

2

81

How does ARIMA() work?

0 1 2 3 4 5 6

0

1

2

3

4

5

6

q

p

step

1

2

3

82

How does ARIMA() work?

0 1 2 3 4 5 6

0

1

2

3

4

5

6

q

p

step

1

2

3

4

83

Egyptian exports

global_economy %>% filter(Code == "EGY") %>%
gg_tsdisplay(Exports, plot_type='partial')

10

15

20

25

30

1960 1980 2000
Year

E
xp

or
ts

0.0

0.5

4 8 12 16
lag [1Y]

ac
f

0.0

0.5

4 8 12 16
lag [1Y]

pa
cf

84

Egyptian exports

fit1 <- global_economy %>%
filter(Code == "EGY") %>%
model(ARIMA(Exports ~ pdq(4,0,0)))

report(fit1)

Series: Exports
Model: ARIMA(4,0,0) w/ mean
##
Coefficients:
ar1 ar2 ar3 ar4 constant
0.986 -0.172 0.181 -0.328 6.692
s.e. 0.125 0.186 0.186 0.127 0.356
##
sigma^2 estimated as 7.885: log likelihood=-141
AIC=293 AICc=295 BIC=305

85

Egyptian exports

fit2 <- global_economy %>%
filter(Code == "EGY") %>%
model(ARIMA(Exports))

report(fit2)

Series: Exports
Model: ARIMA(2,0,1) w/ mean
##
Coefficients:
ar1 ar2 ma1 constant
1.676 -0.8034 -0.690 2.562
s.e. 0.111 0.0928 0.149 0.116
##
sigma^2 estimated as 8.046: log likelihood=-142
AIC=293 AICc=294 BIC=303

86

Central African Republic exports

global_economy %>%
filter(Code == "CAF") %>%
autoplot(Exports) +
labs(title="Central African Republic exports",

y="% of GDP")

10

15

20

25

30

35

1960 1980 2000
Year [1Y]

%
 o

f G
D

P

Central African Republic exports

87

Central African Republic exports

global_economy %>%
filter(Code == "CAF") %>%
gg_tsdisplay(difference(Exports), plot_type='partial')

−4

0

4

8

1960 1980 2000
Year

di
ffe

re
nc

e(
E

xp
or

ts
)

−0.4

−0.2

0.0

0.2

4 8 12 16
lag [1Y]

ac
f

−0.4

−0.2

0.0

0.2

4 8 12 16
lag [1Y]

pa
cf

88

Central African Republic exports

caf_fit <- global_economy %>%
filter(Code == "CAF") %>%
model(arima210 = ARIMA(Exports ~ pdq(2,1,0)),

arima013 = ARIMA(Exports ~ pdq(0,1,3)),
stepwise = ARIMA(Exports),
search = ARIMA(Exports, stepwise=FALSE))

89

Central African Republic exports

caf_fit %>% pivot_longer(!Country, names_to = "Model name",
values_to = "Orders")

A mable: 4 x 3
Key: Country, Model name [4]
Country ‘Model name‘ Orders
<fct> <chr> <model>
1 Central African Republic arima210 <ARIMA(2,1,0)>
2 Central African Republic arima013 <ARIMA(0,1,3)>
3 Central African Republic stepwise <ARIMA(2,1,2)>
4 Central African Republic search <ARIMA(3,1,0)>

90

Central African Republic exports

glance(caf_fit) %>% arrange(AICc) %>% select(.model:BIC)

A tibble: 4 x 6
.model sigma2 log_lik AIC AICc BIC
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 search 6.52 -133. 274. 275. 282.
2 arima210 6.71 -134. 275. 275. 281.
3 arima013 6.54 -133. 274. 275. 282.
4 stepwise 6.42 -132. 274. 275. 284.

91

Central African Republic exports

caf_fit %>%
select(search) %>%
gg_tsresiduals()

−5

0

5

1960 1980 2000
Year

In
no

va
tio

n
re

si
du

al
s

−0.2

−0.1

0.0

0.1

0.2

4 8 12 16
lag [1Y]

ac
f

0

5

10

15

20

−5 0 5
.resid

co
un

t

92

Central African Republic exports

augment(caf_fit) %>%
filter(.model=='search') %>%
features(.innov, ljung_box, lag = 10, dof = 3)

A tibble: 1 x 4
Country .model lb_stat lb_pvalue
<fct> <chr> <dbl> <dbl>
1 Central African Republic search 5.75 0.569

93

Central African Republic exports

caf_fit %>%
forecast(h=5) %>%
filter(.model=='search') %>%
autoplot(global_economy)

10

20

30

1960 1980 2000 2020
Year

E
xp

or
ts level

80

95

94

Modelling procedure with ARIMA()

1 Plot the data. Identify any unusual observations.
2 If necessary, transform the data (using a Box-Cox transformation) to stabilize the

variance.
3 If the data are non-stationary: take first differences of the data until the data are

stationary.
4 Examine the ACF/PACF: Is an AR(p) or MA(q) model appropriate?
5 Try your chosen model(s), and use the AICc to search for a better model.
6 Check the residuals from your chosen model by plotting the ACF of the residuals,

and doing a portmanteau test of the residuals. If they do not look like white noise,
try a modified model.

7 Once the residuals look like white noise, calculate forecasts.

95

Automatic modelling procedure with ARIMA()

1 Plot the data. Identify any unusual observations.
2 If necessary, transform the data (using a Box-Cox transformation) to stabilize the

variance.

3 Use ARIMA to automatically select a model.

6 Check the residuals from your chosen model by plotting the ACF of the residuals,
and doing a portmanteau test of the residuals. If they do not look like white noise,
try a modified model.

7 Once the residuals look like white noise, calculate forecasts.
96

Modelling procedure

97

Outline

1 Stationarity and differencing

2 Non-seasonal ARIMA models

3 Estimation and order selection

4 ARIMA modelling in R

5 Forecasting

6 Seasonal ARIMA models

7 ARIMA vs ETS

98

Point forecasts

1 Rearrange ARIMA equation so yt is on LHS.
2 Rewrite equation by replacing t by T + h.
3 On RHS, replace future observations by their forecasts, future errors by zero, and past errors by

corresponding residuals.

Start with h = 1. Repeat for h = 2, 3,

99

Point forecasts

ARIMA(3,1,1) forecasts: Step 1

(1 − ϕ1B − ϕ2B2 − ϕ3B3)(1 − B)yt = (1 + θ1B)εt,

[
1 − (1 + ϕ1)B + (ϕ1 − ϕ2)B2 + (ϕ2 − ϕ3)B3 + ϕ3B4

]
yt

= (1 + θ1B)εt,

yt − (1 + ϕ1)yt−1 + (ϕ1 − ϕ2)yt−2 + (ϕ2 − ϕ3)yt−3

+ ϕ3yt−4 = εt + θ1εt−1.

yt = (1 + ϕ1)yt−1 − (ϕ1 − ϕ2)yt−2 − (ϕ2 − ϕ3)yt−3

− ϕ3yt−4 + εt + θ1εt−1.

100

Point forecasts

ARIMA(3,1,1) forecasts: Step 1

(1 − ϕ1B − ϕ2B2 − ϕ3B3)(1 − B)yt = (1 + θ1B)εt,

[
1 − (1 + ϕ1)B + (ϕ1 − ϕ2)B2 + (ϕ2 − ϕ3)B3 + ϕ3B4

]
yt

= (1 + θ1B)εt,

yt − (1 + ϕ1)yt−1 + (ϕ1 − ϕ2)yt−2 + (ϕ2 − ϕ3)yt−3

+ ϕ3yt−4 = εt + θ1εt−1.

yt = (1 + ϕ1)yt−1 − (ϕ1 − ϕ2)yt−2 − (ϕ2 − ϕ3)yt−3

− ϕ3yt−4 + εt + θ1εt−1.

100

Point forecasts

ARIMA(3,1,1) forecasts: Step 1

(1 − ϕ1B − ϕ2B2 − ϕ3B3)(1 − B)yt = (1 + θ1B)εt,

[
1 − (1 + ϕ1)B + (ϕ1 − ϕ2)B2 + (ϕ2 − ϕ3)B3 + ϕ3B4

]
yt

= (1 + θ1B)εt,

yt − (1 + ϕ1)yt−1 + (ϕ1 − ϕ2)yt−2 + (ϕ2 − ϕ3)yt−3

+ ϕ3yt−4 = εt + θ1εt−1.

yt = (1 + ϕ1)yt−1 − (ϕ1 − ϕ2)yt−2 − (ϕ2 − ϕ3)yt−3

− ϕ3yt−4 + εt + θ1εt−1.

100

Point forecasts

ARIMA(3,1,1) forecasts: Step 1

(1 − ϕ1B − ϕ2B2 − ϕ3B3)(1 − B)yt = (1 + θ1B)εt,

[
1 − (1 + ϕ1)B + (ϕ1 − ϕ2)B2 + (ϕ2 − ϕ3)B3 + ϕ3B4

]
yt

= (1 + θ1B)εt,

yt − (1 + ϕ1)yt−1 + (ϕ1 − ϕ2)yt−2 + (ϕ2 − ϕ3)yt−3

+ ϕ3yt−4 = εt + θ1εt−1.

yt = (1 + ϕ1)yt−1 − (ϕ1 − ϕ2)yt−2 − (ϕ2 − ϕ3)yt−3

− ϕ3yt−4 + εt + θ1εt−1.

100

Point forecasts (h=1)

yt = (1 + ϕ1)yt−1 − (ϕ1 − ϕ2)yt−2 − (ϕ2 − ϕ3)yt−3

− ϕ3yt−4 + εt + θ1εt−1.

ARIMA(3,1,1) forecasts: Step 2
yT+1 = (1 + ϕ1)yT − (ϕ1 − ϕ2)yT−1 − (ϕ2 − ϕ3)yT−2

− ϕ3yT−3 + εT+1 + θ1εT.

ARIMA(3,1,1) forecasts: Step 3
ŷT+1|T = (1 + ϕ1)yT − (ϕ1 − ϕ2)yT−1 − (ϕ2 − ϕ3)yT−2

− ϕ3yT−3 + θ1eT.

101

Point forecasts (h=1)

yt = (1 + ϕ1)yt−1 − (ϕ1 − ϕ2)yt−2 − (ϕ2 − ϕ3)yt−3

− ϕ3yt−4 + εt + θ1εt−1.

ARIMA(3,1,1) forecasts: Step 2
yT+1 = (1 + ϕ1)yT − (ϕ1 − ϕ2)yT−1 − (ϕ2 − ϕ3)yT−2

− ϕ3yT−3 + εT+1 + θ1εT.

ARIMA(3,1,1) forecasts: Step 3
ŷT+1|T = (1 + ϕ1)yT − (ϕ1 − ϕ2)yT−1 − (ϕ2 − ϕ3)yT−2

− ϕ3yT−3 + θ1eT.

101

Point forecasts (h=1)

yt = (1 + ϕ1)yt−1 − (ϕ1 − ϕ2)yt−2 − (ϕ2 − ϕ3)yt−3

− ϕ3yt−4 + εt + θ1εt−1.

ARIMA(3,1,1) forecasts: Step 2
yT+1 = (1 + ϕ1)yT − (ϕ1 − ϕ2)yT−1 − (ϕ2 − ϕ3)yT−2

− ϕ3yT−3 + εT+1 + θ1εT.

ARIMA(3,1,1) forecasts: Step 3
ŷT+1|T = (1 + ϕ1)yT − (ϕ1 − ϕ2)yT−1 − (ϕ2 − ϕ3)yT−2

− ϕ3yT−3 + θ1eT.

101

Point forecasts (h=2)

yt = (1 + ϕ1)yt−1 − (ϕ1 − ϕ2)yt−2 − (ϕ2 − ϕ3)yt−3

− ϕ3yt−4 + εt + θ1εt−1.

ARIMA(3,1,1) forecasts: Step 2
yT+2 = (1 + ϕ1)yT+1 − (ϕ1 − ϕ2)yT − (ϕ2 − ϕ3)yT−1

− ϕ3yT−2 + εT+2 + θ1εT+1.

ARIMA(3,1,1) forecasts: Step 3
ŷT+2|T = (1 + ϕ1)ŷT+1|T − (ϕ1 − ϕ2)yT − (ϕ2 − ϕ3)yT−1

− ϕ3yT−2.

102

Point forecasts (h=2)

yt = (1 + ϕ1)yt−1 − (ϕ1 − ϕ2)yt−2 − (ϕ2 − ϕ3)yt−3

− ϕ3yt−4 + εt + θ1εt−1.

ARIMA(3,1,1) forecasts: Step 2
yT+2 = (1 + ϕ1)yT+1 − (ϕ1 − ϕ2)yT − (ϕ2 − ϕ3)yT−1

− ϕ3yT−2 + εT+2 + θ1εT+1.

ARIMA(3,1,1) forecasts: Step 3
ŷT+2|T = (1 + ϕ1)ŷT+1|T − (ϕ1 − ϕ2)yT − (ϕ2 − ϕ3)yT−1

− ϕ3yT−2.

102

Point forecasts (h=2)

yt = (1 + ϕ1)yt−1 − (ϕ1 − ϕ2)yt−2 − (ϕ2 − ϕ3)yt−3

− ϕ3yt−4 + εt + θ1εt−1.

ARIMA(3,1,1) forecasts: Step 2
yT+2 = (1 + ϕ1)yT+1 − (ϕ1 − ϕ2)yT − (ϕ2 − ϕ3)yT−1

− ϕ3yT−2 + εT+2 + θ1εT+1.

ARIMA(3,1,1) forecasts: Step 3
ŷT+2|T = (1 + ϕ1)ŷT+1|T − (ϕ1 − ϕ2)yT − (ϕ2 − ϕ3)yT−1

− ϕ3yT−2.

102

Prediction intervals

95% prediction interval

ŷT+h|T ± 1.96
√
vT+h|T

where vT+h|T is estimated forecast variance.

vT+1|T = σ̂2 for all ARIMA models regardless of parameters and orders.
Multi-step prediction intervals for ARIMA(0,0,q):

yt = εt +
q∑
i=1

θiεt−i.

vT|T+h = σ̂2

[
1 +

h−1∑
i=1

θ2i

]
, for h = 2, 3,

103

Prediction intervals

95% prediction interval

ŷT+h|T ± 1.96
√
vT+h|T

where vT+h|T is estimated forecast variance.

vT+1|T = σ̂2 for all ARIMA models regardless of parameters and orders.
Multi-step prediction intervals for ARIMA(0,0,q):

yt = εt +
q∑
i=1

θiεt−i.

vT|T+h = σ̂2

[
1 +

h−1∑
i=1

θ2i

]
, for h = 2, 3,

103

Prediction intervals

95% prediction interval

ŷT+h|T ± 1.96
√
vT+h|T

where vT+h|T is estimated forecast variance.

Multi-step prediction intervals for ARIMA(0,0,q):

yt = εt +
q∑
i=1

θiεt−i.

vT|T+h = σ̂2

[
1 +

h−1∑
i=1

θ2i

]
, for h = 2, 3,

AR(1): Rewrite as MA(∞) and use above result.
Other models beyond scope of this subject.

104

Prediction intervals

95% prediction interval

ŷT+h|T ± 1.96
√
vT+h|T

where vT+h|T is estimated forecast variance.

Multi-step prediction intervals for ARIMA(0,0,q):

yt = εt +
q∑
i=1

θiεt−i.

vT|T+h = σ̂2

[
1 +

h−1∑
i=1

θ2i

]
, for h = 2, 3,

AR(1): Rewrite as MA(∞) and use above result.
Other models beyond scope of this subject.

104

Prediction intervals

Prediction intervals increase in size with forecast horizon.
Prediction intervals can be difficult to calculate by hand
Calculations assume residuals are uncorrelated and normally distributed.
Prediction intervals tend to be too narrow.

▶ the uncertainty in the parameter estimates has not been accounted for.
▶ the ARIMA model assumes historical patterns will not change during the forecast period.
▶ the ARIMA model assumes uncorrelated future errors

105

Outline

1 Stationarity and differencing

2 Non-seasonal ARIMA models

3 Estimation and order selection

4 ARIMA modelling in R

5 Forecasting

6 Seasonal ARIMA models

7 ARIMA vs ETS

106

Seasonal ARIMA models

ARIMA (p, d, q)︸ ︷︷ ︸ (P,D,Q)m︸ ︷︷ ︸
↑ ↑

Non-seasonal part Seasonal part of
of the model of the model

wherem = number of observations per year.

107

Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1)4 model (without constant)

(1 − ϕ1B)(1 − Φ1B4)(1 − B)(1 − B4)yt = (1 + θ1B)(1 + Θ1B4)εt.

6 6 6 6 6 6(
Non-seasonal

AR(1)

)
(
Seasonal
AR(1)

)
(
Non-seasonal
difference

)
(

Seasonal
difference

)
(
Non-seasonal

MA(1)

)
(
Seasonal
MA(1)

)

108

Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1)4 model (without constant)
(1 − ϕ1B)(1 − Φ1B4)(1 − B)(1 − B4)yt = (1 + θ1B)(1 + Θ1B4)εt.

6 6 6 6 6 6(
Non-seasonal

AR(1)

)
(
Seasonal
AR(1)

)
(
Non-seasonal
difference

)
(

Seasonal
difference

)
(
Non-seasonal

MA(1)

)
(
Seasonal
MA(1)

)

108

Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1)4 model (without constant)
(1 − ϕ1B)(1 − Φ1B4)(1 − B)(1 − B4)yt = (1 + θ1B)(1 + Θ1B4)εt.

6 6 6 6 6 6(
Non-seasonal

AR(1)

)
(
Seasonal
AR(1)

)
(
Non-seasonal
difference

)
(

Seasonal
difference

)
(
Non-seasonal

MA(1)

)
(
Seasonal
MA(1)

)

108

Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1)4 model (without constant)
(1 − ϕ1B)(1 − Φ1B4)(1 − B)(1 − B4)yt = (1 + θ1B)(1 + Θ1B4)εt.

All the factors can be multiplied out and the general model written as follows:
yt = (1 + ϕ1)yt−1 − ϕ1yt−2 + (1 + Φ1)yt−4

− (1 + ϕ1 + Φ1 + ϕ1Φ1)yt−5 + (ϕ1 + ϕ1Φ1)yt−6

− Φ1yt−8 + (Φ1 + ϕ1Φ1)yt−9 − ϕ1Φ1yt−10

+ εt + θ1εt−1 + Θ1εt−4 + θ1Θ1εt−5.

109

Common ARIMA models

The US Census Bureau uses the following models most often:

ARIMA(0,1,1)(0,1,1)m with log transformation
ARIMA(0,1,2)(0,1,1)m with log transformation
ARIMA(2,1,0)(0,1,1)m with log transformation
ARIMA(0,2,2)(0,1,1)m with log transformation
ARIMA(2,1,2)(0,1,1)m with no transformation

110

Seasonal ARIMA models

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF.

ARIMA(0,0,0)(0,0,1)12 will show:

a spike at lag 12 in the ACF but no other significant spikes.
The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36,

ARIMA(0,0,0)(1,0,0)12 will show:

exponential decay in the seasonal lags of the ACF
a single significant spike at lag 12 in the PACF.

111

US leisure employment

leisure <- us_employment %>%
filter(Title == "Leisure and Hospitality",

year(Month) > 2000) %>%
mutate(Employed = Employed/1000) %>%
select(Month, Employed)

autoplot(leisure, Employed) +
labs(title = "US employment: leisure and hospitality",

y="Number of people (millions)")

12

14

16

2005 Jan 2010 Jan 2015 Jan 2020 Jan
Month [1M]

N
um

be
r

of
 p

eo
pl

e
(m

ill
io

ns
)

US employment: leisure and hospitality

112

US leisure employment

leisure %>%
gg_tsdisplay(difference(Employed, 12),

plot_type='partial', lag=36) +
labs(title="Seasonally differenced", y="")

−0.4

−0.2

0.0

0.2

0.4

0.6

2005 Jan 2010 Jan 2015 Jan 2020 Jan
Month

Seasonally differenced

0.00

0.25

0.50

0.75

1.00

6 12 18 24 30 36
lag [1M]

ac
f

0.00

0.25

0.50

0.75

1.00

6 12 18 24 30 36
lag [1M]

pa
cf

113

US leisure employment

leisure %>%
gg_tsdisplay(difference(Employed, 12) %>% difference(),

plot_type='partial', lag=36) +
labs(title = "Double differenced", y="")

−0.10
−0.05

0.00
0.05
0.10
0.15

2005 Jan 2010 Jan 2015 Jan 2020 Jan
Month

Double differenced

−0.3

−0.2

−0.1

0.0

0.1

0.2

6 12 18 24 30 36
lag [1M]

ac
f

−0.3

−0.2

−0.1

0.0

0.1

0.2

6 12 18 24 30 36
lag [1M]

pa
cf

114

US leisure employment

fit <- leisure %>%
model(
arima012011 = ARIMA(Employed ~ pdq(0,1,2) + PDQ(0,1,1)),
arima210011 = ARIMA(Employed ~ pdq(2,1,0) + PDQ(0,1,1)),
auto = ARIMA(Employed, stepwise = FALSE, approx = FALSE)

)
fit %>% pivot_longer(everything(), names_to = "Model name",

values_to = "Orders")

A mable: 3 x 2
Key: Model name [3]
‘Model name‘ Orders
<chr> <model>
1 arima012011 <ARIMA(0,1,2)(0,1,1)[12]>
2 arima210011 <ARIMA(2,1,0)(0,1,1)[12]>
3 auto <ARIMA(2,1,0)(1,1,1)[12]>

115

US leisure employment

glance(fit) %>% arrange(AICc) %>% select(.model:BIC)

A tibble: 3 x 6
.model sigma2 log_lik AIC AICc BIC
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 auto 0.00142 395. -780. -780. -763.
2 arima210011 0.00145 392. -776. -776. -763.
3 arima012011 0.00146 391. -775. -775. -761.

116

US leisure employment

fit %>% select(auto) %>% gg_tsresiduals(lag=36)

−0.15

−0.10

−0.05

0.00

0.05

0.10

2005 Jan 2010 Jan 2015 Jan 2020 Jan
Month

In
no

va
tio

n
re

si
du

al
s

−0.1

0.0

0.1

6 12 18 24 30 36
lag [1M]

ac
f

0

10

20

30

−0.1 0.0 0.1
.resid

co
un

t

117

US leisure employment

augment(fit) %>% features(.innov, ljung_box, lag=24, dof=4)

A tibble: 3 x 3
.model lb_stat lb_pvalue
<chr> <dbl> <dbl>
1 arima012011 22.4 0.320
2 arima210011 18.9 0.527
3 auto 16.6 0.680

118

US leisure employment

forecast(fit, h=36) %>%
filter(.model=='auto') %>%
autoplot(leisure) +
labs(title = "US employment: leisure and hospitality",

y="Number of people (millions)")

12.5

15.0

17.5

2000 Jan 2005 Jan 2010 Jan 2015 Jan 2020 Jan
Month

N
um

be
r

of
 p

eo
pl

e
(m

ill
io

ns
)

level

80

95

US employment: leisure and hospitality

119

Cortecosteroid drug sales

h02 <- PBS %>%
filter(ATC2 == "H02") %>%
summarise(Cost = sum(Cost)/1e6)

120

Cortecosteroid drug sales

h02 %>% autoplot(
Cost

)

0.50

0.75

1.00

1.25

1995 Jan 2000 Jan 2005 Jan
Month [1M]

C
os

t

121

Cortecosteroid drug sales

h02 %>% autoplot(
log(Cost)

)

−0.8

−0.4

0.0

1995 Jan 2000 Jan 2005 Jan
Month [1M]

lo
g(

C
os

t)

122

Cortecosteroid drug sales

h02 %>% autoplot(
log(Cost) %>% difference(12)

)

0.0

0.2

0.4

1995 Jan 2000 Jan 2005 Jan
Month [1M]

lo
g(

C
os

t)
 %

>
%

 d
iff

er
en

ce
(1

2)

123

Cortecosteroid drug sales

h02 %>% gg_tsdisplay(difference(log(Cost),12),
lag_max = 36, plot_type = 'partial')

0.0

0.2

0.4

1995 Jan 2000 Jan 2005 Jan
Month

di
ffe

re
nc

e(
lo

g(
C

os
t)

, 1
2)

−0.2

0.0

0.2

0.4

6 12 18 24 30 36
lag [1M]

ac
f

−0.2

0.0

0.2

0.4

6 12 18 24 30 36
lag [1M]

pa
cf

124

Cortecosteroid drug sales

Choose D = 1 and d = 0.
Spikes in PACF at lags 12 and 24 suggest seasonal AR(2) term.
Spikes in PACF suggests possible non-seasonal AR(3) term.
Initial candidate model: ARIMA(3,0,0)(2,1,0)12.

125

Cortecosteroid drug sales

.model AICc

ARIMA(3,0,1)(0,1,2)[12] -485
ARIMA(3,0,1)(1,1,1)[12] -484
ARIMA(3,0,1)(0,1,1)[12] -484
ARIMA(3,0,1)(2,1,0)[12] -476
ARIMA(3,0,0)(2,1,0)[12] -475
ARIMA(3,0,2)(2,1,0)[12] -475
ARIMA(3,0,1)(1,1,0)[12] -463

126

Cortecosteroid drug sales

fit <- h02 %>%
model(best = ARIMA(log(Cost) ~ 0 + pdq(3,0,1) + PDQ(0,1,2)))

report(fit)

Series: Cost
Model: ARIMA(3,0,1)(0,1,2)[12]
Transformation: log(Cost)
##
Coefficients:
ar1 ar2 ar3 ma1 sma1 sma2
-0.160 0.5481 0.5678 0.383 -0.5222 -0.1768
s.e. 0.164 0.0878 0.0942 0.190 0.0861 0.0872
##
sigma^2 estimated as 0.004278: log likelihood=250
AIC=-486 AICc=-485 BIC=-463

127

Cortecosteroid drug sales

gg_tsresiduals(fit)

−0.2

−0.1

0.0

0.1

0.2

1995 Jan 2000 Jan 2005 Jan
Month

In
no

va
tio

n
re

si
du

al
s

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

6 12 18
lag [1M]

ac
f

0

10

20

30

−0.2 −0.1 0.0 0.1 0.2
.resid

co
un

t

128

Cortecosteroid drug sales

augment(fit) %>%
features(.innov, ljung_box, lag = 36, dof = 6)

A tibble: 1 x 3
.model lb_stat lb_pvalue
<chr> <dbl> <dbl>
1 best 50.7 0.0104

129

Cortecosteroid drug sales

fit <- h02 %>% model(auto = ARIMA(log(Cost)))
report(fit)

Series: Cost
Model: ARIMA(2,1,0)(0,1,1)[12]
Transformation: log(Cost)
##
Coefficients:
ar1 ar2 sma1
-0.8491 -0.4207 -0.6401
s.e. 0.0712 0.0714 0.0694
##
sigma^2 estimated as 0.004387: log likelihood=245
AIC=-483 AICc=-483 BIC=-470

130

Cortecosteroid drug sales

gg_tsresiduals(fit)

−0.2

−0.1

0.0

0.1

0.2

1995 Jan 2000 Jan 2005 Jan
Month

In
no

va
tio

n
re

si
du

al
s

−0.1

0.0

0.1

6 12 18
lag [1M]

ac
f

0

10

20

30

40

50

−0.2 −0.1 0.0 0.1 0.2
.resid

co
un

t

131

Cortecosteroid drug sales

augment(fit) %>%
features(.innov, ljung_box, lag = 36, dof = 3)

A tibble: 1 x 3
.model lb_stat lb_pvalue
<chr> <dbl> <dbl>
1 auto 59.3 0.00332

132

Cortecosteroid drug sales

fit <- h02 %>%
model(best = ARIMA(log(Cost), stepwise = FALSE,

approximation = FALSE,
order_constraint = p + q + P + Q <= 9))

report(fit)

Series: Cost
Model: ARIMA(4,1,1)(2,1,2)[12]
Transformation: log(Cost)
##
Coefficients:
ar1 ar2 ar3 ar4 ma1 sar1 sar2 sma1 sma2
-0.0425 0.210 0.202 -0.227 -0.742 0.621 -0.383 -1.202 0.496
s.e. 0.2167 0.181 0.114 0.081 0.207 0.242 0.118 0.249 0.213
##
sigma^2 estimated as 0.004049: log likelihood=254
AIC=-489 AICc=-487 BIC=-456

133

Cortecosteroid drug sales

gg_tsresiduals(fit)

−0.2

−0.1

0.0

0.1

1995 Jan 2000 Jan 2005 Jan
Month

In
no

va
tio

n
re

si
du

al
s

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

6 12 18
lag [1M]

ac
f

0

10

20

30

40

−0.2 −0.1 0.0 0.1 0.2
.resid

co
un

t

134

Cortecosteroid drug sales

augment(fit) %>%
features(.innov, ljung_box, lag = 36, dof = 9)

A tibble: 1 x 3
.model lb_stat lb_pvalue
<chr> <dbl> <dbl>
1 best 36.5 0.106

135

Cortecosteroid drug sales

Training data: July 1991 to June 2006

Test data: July 2006–June 2008

fit <- h02 %>%
filter_index(~ "2006 Jun") %>%
model(
ARIMA(log(Cost) ~ 0 + pdq(3, 0, 0) + PDQ(2, 1, 0)),
ARIMA(log(Cost) ~ 0 + pdq(3, 0, 1) + PDQ(2, 1, 0)),
ARIMA(log(Cost) ~ 0 + pdq(3, 0, 2) + PDQ(2, 1, 0)),
ARIMA(log(Cost) ~ 0 + pdq(3, 0, 1) + PDQ(1, 1, 0))
...

)

fit %>%
forecast(h = "2 years") %>%
accuracy(h02)

136

Cortecosteroid drug sales

.model RMSE

ARIMA(3,0,1)(1,1,1)[12] 0.0619
ARIMA(3,0,1)(0,1,2)[12] 0.0621
ARIMA(3,0,1)(0,1,1)[12] 0.0630
ARIMA(2,1,0)(0,1,1)[12] 0.0630
ARIMA(4,1,1)(2,1,2)[12] 0.0631
ARIMA(3,0,2)(2,1,0)[12] 0.0651
ARIMA(3,0,1)(2,1,0)[12] 0.0653
ARIMA(3,0,1)(1,1,0)[12] 0.0666
ARIMA(3,0,0)(2,1,0)[12] 0.0668

137

Cortecosteroid drug sales

Models with lowest AICc values tend to give slightly better results than the other models.
AICc comparisons must have the same orders of differencing. But RMSE test set comparisons can
involve any models.
Use the best model available, even if it does not pass all tests.

138

Cortecosteroid drug sales

fit <- h02 %>%
model(ARIMA(Cost ~ 0 + pdq(3,0,1) + PDQ(0,1,2)))

fit %>% forecast %>% autoplot(h02) +
labs(y = "H02 Expenditure ($AUD)")

0.3

0.6

0.9

1.2

1995 Jan 2000 Jan 2005 Jan 2010 Jan
Month

H
02

 E
xp

en
di

tu
re

 (
$A

U
D

)

level

80

95

139

Outline

1 Stationarity and differencing

2 Non-seasonal ARIMA models

3 Estimation and order selection

4 ARIMA modelling in R

5 Forecasting

6 Seasonal ARIMA models

7 ARIMA vs ETS

140

ARIMA vs ETS

Myth that ARIMA models are more general than exponential smoothing.
Linear exponential smoothing models all special cases of ARIMA models.
Non-linear exponential smoothing models have no equivalent ARIMA counterparts.
Many ARIMA models have no exponential smoothing counterparts.
ETS models all non-stationary. Models with seasonality or non-damped trend (or both) have two
unit roots; all other models have one unit root.

141

ARIMA vs ETS

ETS modelsETS models

Combination

 of components

Combination

 of components

9 non−additive
 ETS models

9 non−additive
 ETS models

All ETS models

 with M components

All ETS models

 with M components

ARIMA modelsARIMA models

Modelling

 autocorrelations

Modelling

 autocorrelations

Potentially ∞ models

All stationary models

 Many large models

All stationary models

 Many large models

6 additive
 ETS models

6 additive
 ETS models

142

Equivalences

ETS model ARIMA model Parameters

ETS(A,N,N) ARIMA(0,1,1) θ1 = α − 1
ETS(A,A,N) ARIMA(0,2,2) θ1 = α + β − 2

θ2 = 1 − α

ETS(A,Ad,N) ARIMA(1,1,2) ϕ1 = ϕ

θ1 = α + ϕβ − 1 − ϕ

θ2 = (1 − α)ϕ
ETS(A,N,A) ARIMA(0,0,m)(0,1,0)m
ETS(A,A,A) ARIMA(0,1,m + 1)(0,1,0)m
ETS(A,Ad,A) ARIMA(1,0,m + 1)(0,1,0)m

143

Example: Australian population

aus_economy <- global_economy %>% filter(Code == "AUS") %>%
mutate(Population = Population/1e6)

aus_economy %>%
slice(-n()) %>%
stretch_tsibble(.init = 10) %>%
model(eta = ETS(Population),

arima = ARIMA(Population)
) %>%
forecast(h = 1) %>%
accuracy(aus_economy) %>%
select(.model, ME:RMSSE)

A tibble: 2 x 8
.model ME RMSE MAE MPE MAPE MASE RMSSE
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 arima 0.0420 0.194 0.0789 0.277 0.509 0.317 0.746
2 eta 0.0202 0.0774 0.0543 0.112 0.327 0.218 0.298 144

Example: Australian population

aus_economy %>%
model(ETS(Population)) %>%
forecast(h = "5 years") %>%
autoplot(aus_economy) +
labs(title = "Australian population",

y = "People (millions)")

10

15

20

25

1960 1980 2000 2020
Year

P
eo

pl
e

(m
ill

io
ns

)

level

80

95

Australian population

145

Example: Cement production

cement <- aus_production %>%
select(Cement) %>%
filter_index("1988 Q1" ~ .)

train <- cement %>% filter_index(. ~ "2007 Q4")
fit <- train %>%
model(
arima = ARIMA(Cement),
ets = ETS(Cement)

)

146

Example: Cement production

fit %>%
select(arima) %>%
report()

Series: Cement
Model: ARIMA(1,0,1)(2,1,1)[4] w/ drift
##
Coefficients:
ar1 ma1 sar1 sar2 sma1 constant
0.8886 -0.237 0.081 -0.234 -0.898 5.39
s.e. 0.0842 0.133 0.157 0.139 0.178 1.48
##
sigma^2 estimated as 11456: log likelihood=-464
AIC=941 AICc=943 BIC=957

147

Example: Cement production

fit %>%
select(ets) %>%
report()

Series: Cement
Model: ETS(M,N,M)
Smoothing parameters:
alpha = 0.753
gamma = 1e-04
##
Initial states:
l[0] s[0] s[-1] s[-2] s[-3]
1695 1.03 1.05 1.01 0.912
##
sigma^2: 0.0034
##
AIC AICc BIC
1104 1106 1121

148

Example: Cement production

gg_tsresiduals(fit %>% select(arima), lag_max = 16)

−300

−200

−100

0

100

200

300

1990 Q1 1995 Q1 2000 Q1 2005 Q1
Quarter

In
no

va
tio

n
re

si
du

al
s

−0.2

−0.1

0.0

0.1

0.2

2 4 6 8 10 12 14 16
lag [1Q]

ac
f

0

5

10

15

−200 0 200
.resid

co
un

t

149

Example: Cement production

gg_tsresiduals(fit %>% select(ets), lag_max = 16)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

1990 Q1 1995 Q1 2000 Q1 2005 Q1
Quarter

In
no

va
tio

n
re

si
du

al
s

−0.2

−0.1

0.0

0.1

0.2

2 4 6 8 10 12 14 16
lag [1Q]

ac
f

0

5

10

15

20

−0.1 0.0 0.1
.resid

co
un

t

150

Example: Cement production

fit %>%
select(arima) %>%
augment() %>%
features(.innov, ljung_box, lag = 16, dof = 6)

A tibble: 1 x 3
.model lb_stat lb_pvalue
<chr> <dbl> <dbl>
1 arima 6.37 0.783

151

Example: Cement production

fit %>%
select(ets) %>%
augment() %>%
features(.innov, ljung_box, lag = 16, dof = 6)

A tibble: 1 x 3
.model lb_stat lb_pvalue
<chr> <dbl> <dbl>
1 ets 10.0 0.438

152

Example: Cement production

fit %>%
forecast(h = "2 years 6 months") %>%
accuracy(cement) %>%
select(-ME, -MPE, -ACF1)

A tibble: 2 x 7
.model .type RMSE MAE MAPE MASE RMSSE
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 arima Test 216. 186. 8.68 1.27 1.26
2 ets Test 222. 191. 8.85 1.30 1.29

153

Example: Cement production

fit %>%
select(arima) %>%
forecast(h="3 years") %>%
autoplot(cement) +
labs(title = "Cement production in Australia",

y="Tonnes ('000)")

1500

2000

2500

1990 Q1 1995 Q1 2000 Q1 2005 Q1 2010 Q1
Quarter

To
nn

es
 (

'0
00

)

level

80

95

Cement production in Australia

154

	Stationarity and differencing
	Non-seasonal ARIMA models
	Estimation and order selection
	ARIMA modelling in R
	Forecasting
	Seasonal ARIMA models
	ARIMA vs ETS

