

Predictive Analytics

Ch11. Advanced forecasting methods

Prof. Dr. Benjamin Buchwitz

[Complex seasonality](#page-1-0)

- [Vector autoregression](#page-18-0)
- [Neural network models](#page-19-0)
- [Bootstrapping and bagging](#page-32-0)

```
us_gasoline %>% autoplot(Barrels) +
 labs(x = "Year", y = "Thousands of {barrels per day",}title = "Weekly US finished motor gasoline products")
```


3

 $400 -$

```
calls <- read_tsv("http://robjhyndman.com/data/callcenter.txt") %>%
  nples<br>lls <- read_tsv("http://r<br>rename(time = `...1`) %>%
  pivot_longer(-time, names_to="date", values_to="volume") %>%
  mutate(
    date = as.Date(data, format = "%d/\%m/\%Y"),
    datetime = as datetime(date) + time
  ) %>%
  as\_t sibble(inted x = date time)calls %>%
  fill_gaps() %>%
  autoplot(volume) +
  \text{labels}(x = \text{''Weeks''}, y = \text{''Call volume''},title = "5 minute call volume at North American bank")
```
5 minute call volume at North American bank

```
library(sugrrants)
calls %>%
  filter(yearmonth(date) == yearmonth("2003 August")) %>%
  ggplot(aes(x = time, y = volume)) +geom_line() +
  facet calendar(date) +
  \text{labs}(x = \text{''Weeks''}, y = \text{''Call volume''},title = "5 minute call volume at North American bank")
```
5 minute call volume at North American bank


```
turkey_elec <- read_csv("data/turkey_elec.csv", col_names = "Demand") %>%
 mutate(Date = seq(ymd("2000-01-01"), ymd("2008-12-31"), by = "day")) %>%
  as tsibble/index = Date)turkey_elec %>% autoplot(Demand) +
 labs(title = "Turkish daily electricity demand",
      x = "Year", y = "Electricity Demand (GW)")
```
Turkish daily electricity demand

6

TBATS

Trigonometric terms for seasonality **B**ox-Cox transformations for heterogeneity **A**RMA errors for short-term dynamics **T**rend (possibly damped) **S**easonal (including multiple and

non-integer periods)

y^t = observation at time *t y* (*ω*) *t* = $\begin{cases} (y_t^{\omega} - 1)/\omega & \text{if } \omega \neq 0; \\ \log y_t & \text{if } \omega = 0. \end{cases}$ $log y_t$ if $\omega = 0$. $y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^M s_{t-m_i}^{(i)} +$ *d t* $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$ $b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$ $d_t =$ $\sum_{i=1}^p$ ϕ_i d_{t−i} + $\sum_{j=1}^q$ *θ*_{*j*} ε *t***−***j* + ε *t s* (*i*) $t_i^{(i)} = \sum^{k_i}$ *j*=1 *s* (*i*) *j , t s* (*i*) $s_{j,t}^{(i)} = s_{j,t}^{(i)}$ *j , t* − 1 cos *λ* (*i*) *j* + *s* ∗ (*i*) $_{j,t-1}^{*(i)}$ sin $\lambda_j^{(i)}$ $j^{(i)} + \gamma_1^{(i)}$ $\int_1^{(l)} d_t$ *s* (*i*) $\frac{f(i)}{f(t)} = -s_{i,t}^{(i)}$ *j , t* − 1 sin *λ* (*i*) $s_{i,t}^{(i)} + s_{i,t}^{*(i)}$ *j , t* − 1 cos *λ* (*i*) $\gamma_1^{(i)} + \gamma_2^{(i)}$ $_{2}^{(1)}$ d_t

y^t = observation at time *t* $y_t^{(\omega)}$ = $\sqrt{ }$ Į \mathcal{L} $(y_t^{\omega} - 1)/\omega$ if $\omega \neq 0$; $\log y_t$ if $\omega = 0$. $y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum$ *M i*=1 *s* (*i*) *t*−*mⁱ* + *d^t* $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$ $b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$ d_t = \sum *p i*=1 ϕ_i *d*_{t−}*i* + \sum *q j*=1 *θjεt*−*^j* + *ε^t* $s_t^{(i)} = \sum$ *ki j*=1 *s* (*i*) *j,t s* (*i*) $j(t) = S^{(i)}_{j,t}$ *j,t*−1 cos *λ* (*i*) *j* + *s* ∗(*i*) *j,t*−1 sin *λ* (*i*) $y_j^{(i)} + \gamma_1^{(i)} d_t$ *s* (*i*) $j_{i,t}^{(i)} = -s_{i,t}^{(i)}$ *j,t*−1 sin *λ* (*i*) $j^{(i)}$ + $s^{*(i)}_{i,t}$ *j,t*−1 cos *λ* (*i*) $\gamma_1^{(i)} + \gamma_2^{(i)} d_t$ Box-Cox transformation

y^t = observation at time *t* $y_t^{(\omega)}$ = $\sqrt{ }$ Į \mathcal{L} $(y_t^{\omega} - 1)/\omega$ if $\omega \neq 0$; $\log y_t$ if $\omega = 0$. $y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum$ *M i*=1 *s* (*i*) *t*−*mⁱ* + *d^t* $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$ $b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$ d_t = \sum *p i*=1 ϕ_i *d*_{t−}*i* + \sum *q j*=1 *θjεt*−*^j* + *ε^t* $s_t^{(i)} = \sum$ *ki j*=1 *s* (*i*) *j,t s* (*i*) $j(t) = S^{(i)}_{j,t}$ *j,t*−1 cos *λ* (*i*) *j* + *s* ∗(*i*) *j,t*−1 sin *λ* (*i*) $y_j^{(i)} + \gamma_1^{(i)} d_t$ *s* (*i*) $j_{i,t}^{(i)} = -s_{i,t}^{(i)}$ *j,t*−1 sin *λ* (*i*) $j^{(i)}$ + $s^{*(i)}_{i,t}$ *j,t*−1 cos *λ* (*i*) $\gamma_1^{(i)} + \gamma_2^{(i)} d_t$ Box-Cox transformation *M* seasonal periods

y^t = observation at time *t y* (*ω*) *t* = $\begin{cases} (y_t^{\omega} - 1)/\omega & \text{if } \omega \neq 0; \\ \log y_t & \text{if } \omega = 0. \end{cases}$ $log y_t$ if $\omega = 0$. $y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^M s_{t-m_i}^{(i)} +$ *d t* $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$ $b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$ $d_t =$ $\sum_{i=1}^p$ ϕ_i d_{t−i} + $\sum_{j=1}^q$ *θ*_{*j*} ε *t***−***j* + ε *t s* (*i*) $t_i^{(i)} = \sum^{k_i}$ *j*=1 *s* (*i*) *j , t s* (*i*) $s_{j,t}^{(i)} = s_{j,t}^{(i)}$ *j , t* − 1 cos *λ* (*i*) *j* + *s* ∗ (*i*) $_{j,t-1}^{*(i)}$ sin $\lambda_j^{(i)}$ $j^{(i)} + \gamma_1^{(i)}$ *s* (*i*) $\frac{f(i)}{i,t} = -s_{i,t}^{(i)}$ *j , t* − 1 sin *λ* (*i*) $s_{i,t}^{(i)} + s_{i,t}^{*(i)}$ *j , t* − 1 cos *λ* (*i*) $\gamma_1^{(i)} + \gamma_2^{(i)}$ Box-Cox transformation *M* seasonal periods global and local trend

 $\int_1^{(l)} d_t$

 $_{2}^{(1)}$ d_t

y^t = observation at time *t y* (*ω*) *t* = $\begin{cases} (y_t^{\omega} - 1)/\omega & \text{if } \omega \neq 0; \\ \log y_t & \text{if } \omega = 0. \end{cases}$ $log y_t$ if $\omega = 0$. $y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^M s_{t-m_i}^{(i)} +$ *d t* $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$ $b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$ $d_t =$ $\sum_{i=1}^p$ ϕ_i d_{t−i} + $\sum_{j=1}^{q}$ *θ*_{*j*} ε *t***−***j* + ε *t s* (*i*) $t_i^{(i)} = \sum^{k_i}$ *j*=1 *s* (*i*) *j , t s* (*i*) $s_{j,t}^{(i)} = s_{j,t}^{(i)}$ *j , t* − 1 cos *λ* (*i*) *j* + *s* ∗ (*i*) $_{j,t-1}^{*(i)}$ sin $\lambda_j^{(i)}$ $j^{(i)} + \gamma_1^{(i)}$ $\int_1^{(l)} d_t$ *s* (*i*) $\frac{f(i)}{i,t} = -s_{i,t}^{(i)}$ *j , t* − 1 sin *λ* (*i*) $s_{i,t}^{(i)} + s_{i,t}^{*(i)}$ *j , t* − 1 cos *λ* (*i*) $\gamma_1^{(i)} + \gamma_2^{(i)}$ $_{2}^{(1)}$ d_t Box-Cox transformation *M* seasonal periods global and local trend ARMA error

y^t = observation at time *t* $y_t^{(\omega)}$ = $\sqrt{ }$ Į \mathcal{L} $(y_t^{\omega} - 1)/\omega$ if $\omega \neq 0$; $\log y_t$ if $\omega = 0$. $y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum$ *M i*=1 *s* (*i*) *t*−*mⁱ* + *d^t* $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$ $b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$ d_t = \sum *p i*=1 ϕ_i *d*_{t−}*i* + \sum *q j*=1 *θjεt*−*^j* + *ε^t* $s_t^{(i)} = \sum$ *ki j*=1 *s* (*i*) *j,t s* (*i*) $j(t) = S^{(i)}_{j,t}$ *(i)*
j,*t*−1 c‹ Four µrier<mark>-</mark>lik *like* seasor **Fourier-like seasonal terms** *s* (*i*) $j_{i,t}^{(i)} = -s_{i,t}^{(i)}$ *j,t*−1 sin *λ* (*i*) $j^{(i)}$ + $s^{*(i)}_{i,t}$ *j,t*−1 cos *λ* (*i*) $\gamma_1^{(i)} + \gamma_2^{(i)} d_t$ Box-Cox transformation *M* seasonal periods global and local trend ARMA error

y^t = observation at time *t y* (*ω*) *t* = $\begin{cases} (y_t^{\omega} - 1)/\omega & \text{if } \omega \neq 0; \\ \log \frac{y_t}{\omega} & \text{if } \omega = 0. \end{cases}$ $log_{10} \frac{1}{18}$ **if** $\theta = 0$. $y_t^{(\omega)} = \ell_t - \frac{\text{Trigonometric}}{\text{Box-Cox}}$ *t* $\ell_t = \ell_{t-}$ **ARMA** $b_t = (1 - \frac{1}{2})$ $d_t =$ $\sum_{i=1}^p$ ϕ_i d_{t−i} + $\sum_{j=1}^{4}$ *θ*_{*j*} ε *t***−***j* + ε *t s* (*i*) $t_i^{(i)} = \sum^{k_i}$ *j*=1 *s* (*i*) *j , t s* (*i*) $s_{j,t}^{(i)} = s_{j,t}^{(i)}$ *(i)*
j,*t*−1 c‹ Four µrier<mark>-</mark>lik **like seasor** *p* nal te Fourier-like seasonal terms *s* (*i*) $\frac{f(i)}{i,t} = -s_{i,t}^{(i)}$ *j , t* − 1 sin *λ* (*i*) $s_{i,t}^{(i)} + s_{i,t}^{*(i)}$ *j , t* − 1 cos *λ* (*i*) $\gamma_1^{(i)} + \gamma_2^{(i)}$ $_{2}^{(1)}$ d_t Box-Cox transformation *M* seasonal periods global and local trend ARMA error **T**rigonometric **B**ox-Cox **A**RMA **T**rend **S**easonal

gasoline %>% tbats() %>% forecast() %>% autoplot()

calls %>% tbats() %>% forecast() %>% autoplot()

telec %>% tbats() %>% forecast() %>% autoplot()

TBATS

Trigonometric terms for seasonality

Box-Cox transformations for heterogeneity

ARMA errors for short-term dynamics

Trend (possibly damped)

Seasonal (including multiple and non-integer periods)

- Handles non-integer seasonality, multiple seasonal periods.
- \blacksquare Entirely automated
- **Prediction intervals often too wide**
- Very slow on long series

[Complex seasonality](#page-1-0)

- [Vector autoregression](#page-18-0)
- [Neural network models](#page-19-0)
- [Bootstrapping and bagging](#page-32-0)

[Complex seasonality](#page-1-0)

- [Vector autoregression](#page-18-0)
- [Neural network models](#page-19-0)
- [Bootstrapping and bagging](#page-32-0)

Simplest version: linear regression

Simplest version: linear regression

- Coefficients attached to predictors are called "weights".
- \blacksquare Forecasts are obtained by a linear combination of inputs.
- Weights selected using a "learning algorithm" that minimises a "cost function".

Nonlinear model with one hidden layer

Nonlinear model with one hidden layer

- A **multilayer feed-forward network** where each layer of nodes receives inputs from the previous layers.
- Inputs to each node combined using linear combination.
- Result modified by nonlinear function before being output.

Inputs to hidden neuron *j* linearly combined:

$$
z_j = b_j + \sum_{i=1}^4 w_{i,j} x_i.
$$

Modified using nonlinear function such as a sigmoid:

$$
s(z)=\frac{1}{1+e^{-z}},
$$

This tends to reduce the effect of extreme input values, thus making the network somewhat robust to outliers.

- Weights take random values to begin with, which are then updated using the observed data.
- \blacksquare There is an element of randomness in the predictions. So the network is usually trained several times using different random starting points, and the results are averaged.
- Number of hidden layers, and the number of nodes in each hidden layer, must be specified in advance.
- **Lagged values of the time series can be used as inputs to a neural** network.
- NNAR(*p, k*): *p* lagged inputs and *k* nodes in the single hidden layer.
- NNAR(p , 0) model is equivalent to an ARIMA(p , 0, 0) model but without stationarity restrictions.
- Seasonal NNAR(p, P, k): inputs $(y_{t-1}, y_{t-2}, ..., y_{t-p}, y_{t-m}, y_{t-2m}, y_{t-pm})$ and *k* neurons in the hidden layer.
- NNAR(p ^{*, P*}, 0)_{*m*} model is equivalent to an ARIMA(p , 0, 0)(P ,0,0)_{*m*} model but without stationarity restrictions.
- The nnetar() function fits an NNAR(p, P, k)_m model.
- If p and P are not specified, they are automatically selected.
- For non-seasonal time series, default $p =$ optimal number of lags (according to the AIC) for a linear AR(*p*) model.
- For seasonal time series, defaults are $P = 1$ and p is chosen from the optimal linear model fitted to the seasonally adjusted data.

Default $k = (p + P + 1)/2$ **(rounded to the nearest integer).**

- Surface of the sun contains magnetic regions that appear as dark spots.
- **These affect the propagation of radio waves and so telecommunication companies like to predict** sunspot activity in order to plan for any future difficulties.
- Sunspots follow a cycle of length between 9 and 14 years.

Sunspots

sunspots <- sunspot.year %>% as_tsibble() sunspots %>% autoplot(value)

22

NNAR(9,5) model for sunspots

```
sunspots <- sunspot.year %>% as_tsibble()
fit <- sunspots %>% model(NNETAR(value))
fit %>% forecast(h=20, times = 1) %>%
 autoplot(sunspots, level = NULL)
```


Prediction intervals by simulation

fit %>% forecast(h=20) %>% autoplot(sunspots)

24

[Complex seasonality](#page-1-0)

- [Vector autoregression](#page-18-0)
- [Neural network models](#page-19-0)
- [Bootstrapping and bagging](#page-32-0)