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Examples

us_gasoline %>% autoplot(Barrels) +
labs(x = "Year", y = "Thousands of barrels per day",

title = "Weekly US finished motor gasoline products")
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Examples

calls <- read_tsv("http://robjhyndman.com/data/callcenter.txt") %>%
rename(time = `...1`) %>%
pivot_longer(-time, names_to="date", values_to="volume") %>%
mutate(
date = as.Date(date, format = "%d/%m/%Y"),
datetime = as_datetime(date) + time

) %>%
as_tsibble(index = datetime)

calls %>%
fill_gaps() %>%
autoplot(volume) +
labs(x = "Weeks", y = "Call volume",

title = "5 minute call volume at North American bank")
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Examples

library(sugrrants)
calls %>%
filter(yearmonth(date) == yearmonth("2003 August")) %>%
ggplot(aes(x = time, y = volume)) +
geom_line() +
facet_calendar(date) +
labs(x = "Weeks", y = "Call volume",

title = "5 minute call volume at North American bank")
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Examples

turkey_elec <- read_csv("data/turkey_elec.csv", col_names = "Demand") %>%
mutate(Date = seq(ymd("2000-01-01"), ymd("2008-12-31"), by = "day")) %>%
as_tsibble(index = Date)

turkey_elec %>% autoplot(Demand) +
labs(title = "Turkish daily electricity demand",

x = "Year", y = "Electricity Demand (GW)")
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TBATS model

TBATS
Trigonometric terms for seasonality
Box-Cox transformations for heterogeneity
ARMA errors for short-term dynamics
Trend (possibly damped)
Seasonal (including multiple and

non-integer periods)
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TBATS model

yt = observation at time t

y(ω)t =

(y
ω
t − 1)/ω if ω ̸= 0;

log yt if ω = 0.

y(ω)t = ℓt−1 + ϕbt−1 +
M∑
i=1

s(i)t−mi
+ dt

ℓt = ℓt−1 + ϕbt−1 + αdt
bt = (1 − ϕ)b + ϕbt−1 + βdt

dt =
p∑
i=1

ϕidt−i +
q∑
j=1

θjεt−j + εt

s(i)t =
ki∑
j=1

s(i)j,t
8

s(i)j,t = s(i)j,t−1 cosλ(i)
j + s∗(i)

j,t−1 sinλ(i)
j + γ(i)

1 dt
s(i)j,t = −s(i)j,t−1 sinλ(i)

j + s∗(i)
j,t−1 cosλ(i)

j + γ(i)
2 dt
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Complex seasonality

gasoline %>% tbats() %>% forecast() %>% autoplot()
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Complex seasonality

calls %>% tbats() %>% forecast() %>% autoplot()
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Complex seasonality

telec %>% tbats() %>% forecast() %>% autoplot()
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TBATS model

TBATS
Trigonometric terms for seasonality

Box-Cox transformations for heterogeneity

ARMA errors for short-term dynamics

Trend (possibly damped)

Seasonal (including multiple and non-integer periods)

Handles non-integer seasonality, multiple seasonal periods.
Entirely automated
Prediction intervals often too wide
Very slow on long series
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Neural network models

Simplest version: linear regression

Input #1

Input #2

Input #3

Input #4

Output

Input
layer

Output
layer

Coefficients attached to predictors are called “weights”.
Forecasts are obtained by a linear combination of inputs.
Weights selected using a “learning algorithm” that minimises a “cost function”.
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Neural network models

Nonlinear model with one hidden layer
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Input #3

Input #4

Output

Hidden
layer
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layer

Output
layer

Amultilayer feed-forward network where each layer of nodes receives
inputs from the previous layers.
Inputs to each node combined using linear combination.
Result modified by nonlinear function before being output.
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Neural network models

Inputs to hidden neuron j linearly combined:

zj = bj +
4∑
i=1

wi,jxi.

Modified using nonlinear function such as a sigmoid:

s(z) =
1

1 + e−z ,

This tends to reduce the effect of extreme input values, thus making the network somewhat robust to
outliers.
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Neural network models

Weights take random values to begin with, which are then updated using the observed data.
There is an element of randomness in the predictions. So the network is usually trained several
times using different random starting points, and the results are averaged.
Number of hidden layers, and the number of nodes in each hidden layer, must be specified in
advance.
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NNAR models

Lagged values of the time series can be used as inputs to a neural
network.
NNAR(p, k): p lagged inputs and k nodes in the single hidden layer.
NNAR(p, 0) model is equivalent to an ARIMA(p, 0, 0) model but without
stationarity restrictions.
Seasonal NNAR(p, P, k): inputs (yt−1, yt−2, . . . , yt−p, yt−m, yt−2m, yt−Pm)
and k neurons in the hidden layer.
NNAR(p, P, 0)m model is equivalent to an ARIMA(p, 0, 0)(P,0,0)m model
but without stationarity restrictions.
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NNAR models in R

The nnetar() function fits an NNAR(p, P, k)m model.
If p and P are not specified, they are automatically selected.
For non-seasonal time series, default p = optimal number of lags
(according to the AIC) for a linear AR(p) model.
For seasonal time series, defaults are P = 1 and p is chosen from the
optimal linear model fitted to the seasonally adjusted data.
Default k = (p + P + 1)/2 (rounded to the nearest integer).
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Sunspots

Surface of the sun contains magnetic regions that appear as dark spots.
These affect the propagation of radio waves and so telecommunication companies like to predict
sunspot activity in order to plan for any future difficulties.
Sunspots follow a cycle of length between 9 and 14 years.
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Sunspots

sunspots <- sunspot.year %>% as_tsibble()
sunspots %>% autoplot(value)
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NNAR(9,5) model for sunspots

sunspots <- sunspot.year %>% as_tsibble()
fit <- sunspots %>% model(NNETAR(value))
fit %>% forecast(h=20, times = 1) %>%
autoplot(sunspots, level = NULL)
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Prediction intervals by simulation

fit %>% forecast(h=20) %>%
autoplot(sunspots)
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