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Unit objectives

1 To obtain an understanding of common statistical methods used in statistical
modeling.

2 To develop the computer skills required to model relationships found in
business, economic and social sciences contexts;

3 To gain insights into the problems of implementing and conducting analyses
for professional use.
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Course Contents

Session Topic

1 Simple Linear Regression
2 Multiple Linear Regression
3 Regression Diagnostics
4 Qualitative Variables as Predictors
5 Transformation of Variables
6 Weighted Least Squares
7 Correlated Errors
8 Analysis of Collinear Data
9 Working with Collinear Data
10 Variable Selection Procedures
11 Logistic Regression
12 Further Topics
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Evidence
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R and RStudio

Install R
https://cloud.r-project.org/

Install RStudio
https://www.rstudio.com/products/rstudio/download/#download
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Examination Modalities

Grading is based on a portfolio examination with three parts:

1 One Lecture Recap Presentation (20%)
2 Hand-in Exercises (40%)
3 Final Case Study (40%)

Outdated!
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What is Regression Analysis?

Regression analysis is a conceptually simple method for investigating
functional relationships among variables.
The relationship is expressed in the form of an equation or a model
connecting the response or dependent variable with one ore more
explanatory or predictor variabes.
We denote the response variable by Y and the set of predictor variables by
X1, X2, . . . , Xp, where p denotes the number of predictor variables.
The true relationship between the response and its predictors can be
approximated by the regression model, where ϵ represents the random
discrepancy in the relation.

Y = f(X1, X2, . . . , Xp) + ϵ
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The Regression Formula

The function f(X1, X2, . . . , Xp) describes the relationship between Y and
X1, X2, . . . , Xp and can take any functional form.
One example of a function is the linear regression model:

Y = β0 + β1X1 + β2X2 + . . . βpXp + ϵ

Here β0, β1, . . . , βp are called the regression parameters or coefficients,
which are unknown constants and need to be estimated from data.
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Data Example: River Data

Nitrogen: Mean nitrogen concentration (mg/l) based on samples taken at regular
intervals during the spring, summer and fall months
Agr: Percentage of land area currently in agricultural use
Forest: Percentage of forest land
Rsdntial: Percentage of land area in residential use
ComIndl: Percentage of land area in either commercial or industrial use

head(P010)

## Agr Forest Rsdntial ComIndl Nitrogen
## Olean 26 63 1.2 0.29 1.10
## Cassadaga 29 57 0.7 0.09 1.01
## Oatka 54 26 1.8 0.58 1.90
## Neversink 2 84 1.9 1.98 1.00
## Hackensack 3 27 29.4 3.11 1.99
## Wappinger 19 61 3.4 0.56 1.42
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Data Example: Motor Trend US Car Magazine

# see help(mtcars) for variable description
mtcars

## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
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Steps in Regression Analysis

1 Statement of the problem
2 Selection of potentially relevant variables
3 Data collection
4 Model specification
5 Choice of fitting method
6 Model fitting
7 Model validation and criticism
8 Using the chosen model(s) for the solution of the proposed problem
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Statement of the problem

Every analysis starts with the definition of the problem, which includes
formulation of questions adressed by the analysis.
Ill-defined problems or misformulated questions can lead to wasted effort or
the selection of a wrong model.
Finding and formulating suitable questions is probably the hardest part in an
analysis.
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Example: Problem Statement Definition

Assume we want to research whether or not an employer is discriminating
against a group of employees, e.g. women and data on salary, gender and
qualification is available.
There are multiple definitions of discriminations available in the literature (a)
women are paid less than equally qualified men, or (b) women are more
qualified than equally paid men.

Your turn
What is the modeling implication of the definition?

a) salary = f(qualification, gender) + ϵ

b) qualification = f(salary, gender) + ϵ
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Flowchart
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Introduction

Y = f(X) + ϵ

We start with the simple case to study the relationship between the
response Y and a single predictor X.
As we only have one regressor variable we drop the subscript to simplify the
notation (X1 = X).
We derive and formulate the regression model and focus on the key results
but favor numerical examples over mathematical derivations.
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Covariance

Determine the sign:

yi − ȳ the deviation of each observation yi from the mean of the response
variable,
xi − x̄ the deviation of each observation xi from the mean of the predictor
variable, and
the product of the above quantities, (yi − ȳ)(xi − x̄)

Quadrant yi − ȳ xi − x̄ (yi − ȳ)(xi − x̄)

1 (top right)
2 (top left)
3 (bottom left
4 (bottom right)
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Covariance

Positive Relationship
If the linear realtionship between Y and X is positive (when X increases, Y
also increases), then there are more points in the first and third quadrants
than in the second and fourth.
The sum over the elements in the last column is likely to be positive, that is
Cov(Y, X) > 0.

Negative Relationship
If the linear relationship between Y and X is negative (as X increases Y
decreases), then there are more points in the second and fourth quadrants
than in the first and third.
The sum over the elements in the last column is likely to be negative, that is
Cov(Y, X) < 0.
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Covariance

Cov(X, Y) =
1

n − 1

n∑
i=1

(yi − ȳ)(xi − x̄)

The quantity calculated using the above formula is called the covariance.
The sign of the covariance indicates the relationship between Y and X.
The covariance can only indicate the direction of a relationship, and does
not tell much about the strength of the relationship.
the covariance is unit sensitive, changing the unit of a measurement
(e.g. from Euro to kEuro) changes the value of the covariance.

Your turn
What happens if we calculate Cov(X, Y) instead of Cov(Y, X)?
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Correlation Coefficient

To avoid the obvious disadvantages of the covariance we can standardize
(z-transform) each variable before computing the covariance.
Standardizing Y means subtracting the mean ȳ and dividing by the
associated sample standard deviation sy.
The resulting variable zi has mean zero and unit standard deviation.

zi =
yi − ȳ
sy

with sy =

√∑n
i=1(yi − ȳ)2

n − 1
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Correlation Coefficient

Cor(Y, X) =
1

n − 1

n∑
i=1

(
yi − ȳ
sy

)(
xi − x̄
sx

) =
Cov(Y, X)

sysx

Calculating the covariance of the standardized values yields the correlation
coefficient.
Cor(Y, X) can be interpreted in two ways, either as

▶ the covariance between two standardized variables or as
▶ the ratio of the covariance to the standard deviations of the two variables

Opposed to the covariance, Cor(Y, X) is scale invariant so that it is not
affected by unit changes. It also satisfies −1 ≥ Cor(Y, X) ≤ 1 and therefore
indicates direction and strength.
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Correlation Coefficient

Cor(Y, X) = 0 does not necessarily mean that the variables are not related!
x <- seq(from=-5, to=5,by=.1)
y <- 50 - xˆ2
cor_yx = cor(y,x)
round(cor_yx, digits=4)

## [1] 0

plot(x,y)
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Example: Anscombe Quartet

knitr::kable(anscombe[,c("y1","x1","y2","x2","y3","x3","y4","x4")], booktabs=T)

y1 x1 y2 x2 y3 x3 y4 x4

8.04 10 9.14 10 7.46 10 6.58 8
6.95 8 8.14 8 6.77 8 5.76 8
7.58 13 8.74 13 12.74 13 7.71 8
8.81 9 8.77 9 7.11 9 8.84 8
8.33 11 9.26 11 7.81 11 8.47 8
9.96 14 8.10 14 8.84 14 7.04 8
7.24 6 6.13 6 6.08 6 5.25 8
4.26 4 3.10 4 5.39 4 12.50 19
10.84 12 9.13 12 8.15 12 5.56 8
4.82 7 7.26 7 6.42 7 7.91 8
5.68 5 4.74 5 5.73 5 6.89 8

Your turn
Choose one of the datasets (e.g. i = 3) and calculate ȳi, x̄i, Cov(yi, xi) and Cor(yi, xi)
using R (Hint: mean, cov, cor).
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Results: Anscombe Quartet
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Learning: Anscombe Quartet

Like many other summary statistics the correlation coefficient can be
substantially influenced by one of a few outliers in the data.
All four datasets in the Anscombe quartet have almost the same summary
statistics, despite being inherently different.
A purely descriptive analysis can not reveal the different patterns we need
to plot the data before starting an analysis.
Findings:

a) can be adequately described by a linear model
b) is nonlinear and would be better fitted by a quadratic function
c) one outlier distorts the slope and intercept of the lines
d) is unsuitable for linear fitting as the line is determined by a single extreme

observation
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Example: Computer Repair Data

# Minutes = Duration of the service operation
# Units = Number of computers repaired during service operation
head(P031)

## Minutes Units
## 1 23 1
## 2 29 2
## 3 49 3
## 4 64 4
## 5 74 4
## 6 87 5

Your turn
Calculate Cov(Y, X) and Cor(Y, X) manually (step-by-step) using R by avoiding the
internal functions cov and cor.
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The Simple Linear Regression Model

The correlation coefficient is useful to measure the strength of a pairwise
relationship, it cannot be used for prediction purposes.
That means that we cannot use Cor(Y, X) to predict one variable, when the
other one is given.
Regression is an extension to correlation analysis and cannot only measure
direction, but allows for numerically describing that relationship.
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The Simple Linear Regression Model

Y = β0 + β1X + ϵ

β0 and β1 are constants called the regression coefficients, and ϵ is the error
term.

▶ β0 is called the intercept. It is the prediction value, when X = 0.
▶ β1 is called the slope. It can be interpreted as the change in Y, when X changes

by one unit.

Each observation in the data can therefore be written as:

yi = β0 + β1xi + ϵi with i = 1, 2, . . . , n
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The Simple Linear Regression Model

We assume that (in the range of our observations studied), the linear
equation provides an acceptable approximation to the real relationship: Y is
approximately a linear function of X.
The error term ϵ measures the discrepancy of the approximation.
That simple linear regression model is linear in two ways:

▶ the relationship between X and Y is linear
▶ more generally the word linear describes that the regression parameters β0

and β1 enter the equation in a linear fashion
▶ Y = β0 + β1X2 + ϵ is still a linear model but with a quadratic term!

In correlation X and Y are of equal “importance” which is reflected in the
symmetry Cor(Y, X) = Cor(X, Y).
In regression we want to explain Y, hence the importance of the predictor X
lies on its ability to account for the variability of the response.
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Example: Computer Repair Data

Reconsidering the computer repair data and assuming we want to predict the
numbers of support engineers that will be required for a task, we can now
formulate an equation in form of a linear model that is assumed to represent the
relationship between the length of service calls and the number of electronic
components in the computer that must be repaired.

Minutes = β0 + β1 Units + ϵ

Your turn
Consult the scatter plot (plot) of the data (P031) and check whether the straight
linear relationship is a reasonable assumption.
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Parameter Estimation

How do we
determine β0 and β1?
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Parameter Estimation

plot(P031$Minutes,P031$Units,xlab="Minutes",ylab="Units", pch=19)
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Parameter Estimation

We want values for β0 and β1 that give the best fit or the best representation
for the points in the graph.
This can be achieved using the least squares method that minimizes the
sum of squares of vertical distances.
Those vertical distances from each point to the line represent the errors ϵi
and can be obtained by:

ϵi = yi − β0 − β1x1 for i = 1, 2, . . . , n
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Parameter Estimation

As β0 and β1 are unknown, but required to calculate the errors and
therefore the sum of squared errors, we can devise a function for that:

S(β0, β1) =
n∑
i=1

ϵ2i =
n∑
i=1

(yi − β0 − β1x1)2

This is a quadratic function that can be minimized. The analytical solution for
the values β̂0 and β̂1 that minimize the function S( ) are

β̂1 =
∑

(yi − ȳ)(xi − x̄)∑
(xi − x̄)2

and β̂0 = ȳ − β̂1x̄

Both, β̂0 and β̂1 are called the least squares estimates and give the line with
the smallest possible sum of squares of vertical distances.
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Parameter Estimation

The least squares regression line can always be found (does always exist)
and is given by

Ŷ = β̂0 + β̂1X

For each observation we can compute a fitted value, which is given by
ŷi = β̂0 + β̂1xi for i = 1, 2 . . . , n

Each point (xi, ŷi) is a point on the regression line

The corresponding vertical distances are called ordinary least squares
residuals an can be computed like

ϵ̂i = yi − ŷi for i = 1, 2 . . . , n
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Parameter Estimation

Your turn
Add a sketch of the least squares regression line to the plot above and include,
mark and annotate the fitted values and the ordinary least squares residuals.
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Parameter Estimation
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Parameter Estimation

Your turn

Calculate β̂0 and β̂1 twice using R.
1) Manually (abstain from cor and cov) using R
2) Using the functions mentioned above

Plot the data and add your calculated regression line to that plot (Hint:
abline)
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Tests of Hypotheses

So far we only made one assumption or hypothesis about the relationship
between the response and predictor variables, which is called the linearity
assumption.
An early step in an analysis should always be the validation of this
assumption: We wish to determine if the data at hand supports the
assumption that Y and X are linearly related.
An informal way to check this assumption is to check the scatter plot.
A more formal way to check the assumption and to measure the usefulness
of X as a predictor for Y is to conduct a hypothesis test about the regression
parameter β1.
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Tests of Hypotheses

Testing for the postulated relationship can be done by checking the
hypothesis that β1 = 0, which means that there is no linear relationship
between X and Y.
Finding that β1 > 0 or β1 < 0 is equivalent to β1 ̸= 0 and would provide
evidence (not proof!) for an existing linear relationship.
Testing of this hypothesis requires the assumption that the errors ϵi are
independent random quantitites originating from a normal distribution with
zero mean and common variance σ2.

▶ ϵ ∼ N(0, σ2)
▶ ϵi are independent
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Tests of Hypotheses

Given that the assumptions for the error term ϵ hold, β̂0 and β̂1 are
unbiased estimates of β0 and β1.
This means that β̂0 and β̂1 allow to draw conclusions about the unobserved
and unknown parameters β0 and β1 in the population, hence E(β̂) = β.
Under the mentioned circumstances the variances of the regression
coefficients are

Var(β̂0) = σ2
[
1
n

+
x̄2∑

(xi − x̄)2

]
and Var(β̂1) =

σ2∑
(xi − x̄)2

The variances of β̂0 and β̂1 depend on the unknown and unobservable
parameter σ2, which needs to be estimated from the data before we can
proceed.
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Tests of Hypotheses

An unbiased estimate of σ2 is given by

σ̂2 =
∑

ϵ2i
n − 2

=
∑

(yi − ŷi)2

n − 2
=

SSE
n − 2

Here SSE is an abbreviation for Sum of Squares Error (Residuals).
The number n − 2 is called degrees of freedom (df) and is equal to the
number of observations nminus the number of esimated regression
coefficients.
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Tests of Hypotheses

Plugging σ̂2 into Var(β̂0) and Var(β̂1) yields unbiased estimates of the
respective variances.
The estimate of the standard deviation is called the standard error (s.e.)

s.e.(β̂0) = σ̂2

√
1
n

+
x̄2∑

(xi − x̄)2
and s.e.(β̂1) =

σ̂2√∑
(xi − x̄)2

The standard error of β̂1 is a measure of how precisely the slope has been
estimated. The smaller s.e.(β̂1), the more precise is the estimator.
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Tests of Hypotheses

We are now in the position to perform statistical analysis concerning the
usefulness of X as a predictor of Y. Under the assumption of normality, an
appropriate test for testing the hypothesis is the t-test.

H0 : β1 = 0 versus H1 : β1 ̸= 0

The test statistic follows a Student t distribution with n − 2 degress of freedom
and we need a specified significance value (e.g. α = 0.05) to perform the test.

t1 =
β̂1

s.e.(β̂1)
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Tests of Hypotheses

Carrying out the test is done by comparing the value t1 against the appropriate
critical value obtained from the t-table, which is t(n−2,α/2) (Note that we devide α

by 2 as we have a two-sided test).

Reject H0 at the given significance level if:

t1 ≥ t(n−2,α/2) or t1 ≤ −t(n−2,α/2)

One condition is fulfilled if |t1| ≤ t(n−2,α/2). A criterion equivalent to that is to
compare the p-value (implicit probability value) for the t-test with α and reject H0

if p(|t1|) ≤ α, where p(|t1|), called the p-value, is the sum of the two shaded
areas under the following curve. This value is also provided by R.
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Tests of Hypotheses
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Tests of Hypotheses

The t-test can be generalized to test the more general hypothesis H0 : β1 = β0
1 ,

where β0
1 is a constant chosen by the data analyst.

t1 =
β̂1 − β0

1

s.e.(β̂1)

The t-test can also be used for testing the intercept β0 in the same fashion.
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Tests of Hypotheses

summary(lm(Minutes ~ 1 + Units, data=P031))

##
## Call:
## lm(formula = Minutes ~ 1 + Units, data = P031)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.232 -3.341 -0.714 4.777 7.803
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.162 3.355 1.24 0.24
## Units 15.509 0.505 30.71 8.9e-13 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 5.39 on 12 degrees of freedom
## Multiple R-squared: 0.987, Adjusted R-squared: 0.986
## F-statistic: 943 on 1 and 12 DF, p-value: 8.92e-13
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Identify all quantities in the
showed regression output.



Confidence Intervals

Based on the assumption that the errors ϵ are normally distributed ϵ ∼ N(0, σ2),
we concluded that the sampling distribution of β0 and β1 is also normal.

The (1 − α) · 100% confidence intervals for β0 and β1 are given by
β̂0 ± t(n−2,α/2) · s.e.(β̂0) and β̂1 ± t(n−2,α/2) · s.e.(β̂1)

▶ with t(n−2,α/2) being the (1 − α/2) percentile of a t distribution with n − 2
degrees of freedom

▶ Interpretation: If we took repeated samples of the same size (n) at the same
values of X and construct e.g. the 95% confidence intervals for the slope
parameter (based on β̂1) for each sample, then 95% of these intervals would be
expected to contain the true but unknown value β1 of the slope.
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Confidence Intervals

summary(lm(Minutes ~ 1 + Units, data=P031))

##
## Call:
## lm(formula = Minutes ~ 1 + Units, data = P031)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.232 -3.341 -0.714 4.777 7.803
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.162 3.355 1.24 0.24
## Units 15.509 0.505 30.71 8.9e-13 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 5.39 on 12 degrees of freedom
## Multiple R-squared: 0.987, Adjusted R-squared: 0.986
## F-statistic: 943 on 1 and 12 DF, p-value: 8.92e-13
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Predictions

In addition to describing and explaining observed relationships, the fitted
regression equation can be used for prediction. We distinguish two types of
predictions:

1) The prediction of the value of the response Variable Y which corresponds to
any chosen value x0 of the predictor variable.

2) The estimation of themean response µ0, when X = x0.
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Predictions

Value of Response & Prediction Limits

The predicted value ŷ0 is given by ŷ0 = β̂0 + β̂1x0. Its confidence interval can be constructed
by ŷ0 ± t(n−2,α/2) · s.e.(ŷ0). The standard error of the prediction is

s.e.(ŷ0) = σ̂

√
1 +

1
n

+
(x0 − x̄)2∑

(xi − x̄)2

Mean Response & Confidence Limits

The predicted value µ̂0 is given by µ̂0 = β̂0 + β̂1x0. Its confidence interval is given by
µ̂0 ± t(n−2,α/2) · s.e.(µ̂0). The standard error of the prediction is

s.e.(µ̂0) = σ̂

√
1
n

+
(x0 − x̄)2∑

(xi − x̄)2
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Predictions

How do those two predictions differ from each other?

What do they have in common?
Why is the uncertainty smaller when predicting the mean response µ̂0

instead of the single value ŷ0?
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Predictions

Your turn
Use the computer repair data (P031) to do the following with:

Predict the length of a service call and the associated standard deviation in
which four components have to be repaired
Estimate the expected mean service time for calls that needed four
components to be repaired.

There are two dangers in such calculations:

Notice the substantial uncertainty / the large standard error
The linear relationship may only hold in the range of the observed data. In
case of the computer repair data we would for example not use this
procedure to predict service times for services which require e.g. 25
components to be repaired
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Goodness of Fit

Which line has a higher quality of fit and therefore resembles the underlying
relationship better?
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Goodness of Fit

The quality of the fit can be assessed by one of the following (highly related) ways:

1 The discussed tests (if H0 is rejected), the magnitude of the values gives us
information about the strength (not only existence) of the linear relationship
between Y and X. The larger |t| (or the smaller the p-value), the stronger the
linear relationship. The tests are objective but require the stated assumption
of normality of ϵ.

2 One can also revert to Cor(Y, X) and the scatter plot of the data. The closer
the set of points to a straignt line, the closer is |Cor(Y, X)| to 1 and the
stronger is the linear relationship between Y and X. This approach is
informal and subjective, but requires only the linearity assumption.
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Goodness of Fit

3 Examine the scatter plot of the response Y versus the fitted values Ŷ. The
closer the points to a straight line, the stronger is the linear relationship.
This can be measured using the correlation Cor(Ŷ, Y). In simple linear
regression this is redundant, as Cor(Ŷ, Y) = |Cor(Y, X)|. However when
multiple regressors are available this is an informative plot.

4 Decomposition of the variance Var(Y), which is in fact closely related to the
previous approach of using Cor(Ŷ, Y), but useful for simple and multivariate
linear regression.
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Goodness of Fit

After computing the least squares estimates let us compute these quantities.

SST =
∑

(yi − ȳ)2

SSR =
∑

(ŷi − ȳ)2

SSE =
∑

(yi − ŷi)2

Sum of Squares Total (SST) is the total deviation of Y from its mean ȳ.
Sum of Squares Regression (SSR) is the explained deviation, that is modeled
by the regression line.
Sum of Squares Error (SSE) is the total deviation of the residuals.
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Goodness of Fit (Graphical Illustration)
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Goodness of Fit

SST = SSR + SSE

yi = ŷi + (yi − ŷi)

Observed = Fit + Deviation from Fit

Subtracting ȳ yields:

yi − ȳ = (ŷi − ȳ) + (yi − ŷi)

Deviation from mean = Deviation due to Fit + Residual

The sum of squared deviations in Y can be decomposed accordingly!
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Observed = Fit + Deviation from Fit

Subtracting ȳ yields:
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Goodness of Fit

The first, SSR, measures the quality of X as a predictor of Y
the second, SSE, measures the error in this prediciton.
Therefore the ratio R2 = SSR/SST is the proportion of the total variation in Y
that is accounted for by the predictor X. It follows that:

R2 =
SSR
SST

= 1 − SSE
SST

65



Goodness of Fit

Your turn

Calculate the R2 for the Computer repair data and show that
R2 = [Cor(Y, X)]2 = [Cor(Y, Ŷ)]2 holds in the case of simple linear regression.
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Additional Chapters

Regression Line through the Origin
Trivial Models
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