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Examination Modalities

Grading is based on a portfolio examination with three parts:

1 One Lecture Recap Presentation (20%)
2 Hand-in Excercises (40%)
3 Final Case Study (40%)
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Introduction

Y = f(X1, X2, . . . , Xp) + ϵ

We now generalize the simple linear regression model so that the relation
between the response Y and p predictor variables X1, X2, . . . , Xp can be
studied.
We still assume that within the range of the data the true relation between
Y and the predictors can be approximated using a linear function.
The previously discussed simple linear regression model can be seen as a
special case of the general linear regression model where p = 1.
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Model

Y = β0 + β1X1 + β2X2 + . . . + βpXp + ϵ

Each regressor needs its own constant β so that the regression coefficients
are now β0, β1, . . . , βp.
The random disturbance is noted using ϵ. This term measures the
discrepancy in the approximation and ϵ contains no systematic information
for determing Y that is not already captured by the X’s.
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Model

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + ϵi

i = 1, 2, . . . , n

Following from the model equation, each observation can be written as
above, where yi respresents the i-th value of the response variable Y.
xi1, xi2, . . . , xip are the values of the regressors that are associated with the
i-th unit in the sample (usually i-th row of data).
ϵi represents the individual error in the linear approximation for the i-th data
unit.
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Example: Supervisor Performance

Variable Description

Y Overall rating of job being done by supervisor
X1 Handles employee complaints
X2 Does not allow special privileges
X3 Opportunity to learn new things
X4 Raises based on performance
X5 Too critical of poor performance
X6 Rate of advancing to better jobs

X1, X2 and X5 relate to direct interpersonal relationships between employee
and supervisor
X3 and X4 relate to the job as a whole
X6 is an indicator of the perceived progress of the employee
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Example: Supervisor Performance

# Supervisor Performance Data
P060

## Y X1 X2 X3 X4 X5 X6
## 1 43 51 30 39 61 92 45
## 2 63 64 51 54 63 73 47
## 3 71 70 68 69 76 86 48
## 4 61 63 45 47 54 84 35
## 5 81 78 56 66 71 83 47
## 6 43 55 49 44 54 49 34
## 7 58 67 42 56 66 68 35
## 8 71 75 50 55 70 66 41
## 9 72 82 72 67 71 83 31
## 10 67 61 45 47 62 80 41
## 11 64 53 53 58 58 67 34
## 12 67 60 47 39 59 74 41
## 13 69 62 57 42 55 63 25
## 14 68 83 83 45 59 77 35
## 15 77 77 54 72 79 77 46
## 16 81 90 50 72 60 54 36
## 17 74 85 64 69 79 79 63
## 18 65 60 65 75 55 80 60
## 19 65 70 46 57 75 85 46
## 20 50 58 68 54 64 78 52
## 21 50 40 33 34 43 64 33
## 22 64 61 52 62 66 80 41
## 23 53 66 52 50 63 80 37
## 24 40 37 42 58 50 57 49
## 25 63 54 42 48 66 75 33
## 26 66 77 66 63 88 76 72
## 27 78 75 58 74 80 78 49
## 28 48 57 44 45 51 83 38
## 29 85 85 71 71 77 74 55
## 30 82 82 39 59 64 78 39
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Example: Supervisor Performance

# Descriptive Statistics for all variables
dim(P060)

## [1] 30 7

t(sapply(P060, summary))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## Y 40 58.75 65.5 64.63 71.75 85
## X1 37 58.50 65.0 66.60 77.00 90
## X2 30 45.00 51.5 53.13 62.50 83
## X3 34 47.00 56.5 56.37 66.75 75
## X4 43 58.25 63.5 64.63 71.00 88
## X5 49 69.25 77.5 74.77 80.00 92
## X6 25 35.00 41.0 42.93 47.75 72
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Example: Supervisor Performance

We now assume that Y is linearly related to the six explanatory variables:

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + ϵ

Note that this assumption needs to be verified, which we ignore for now! It may
however e.g. be possible that one or more variables have no relation with Y or
that the model is incomplete and important variables are missing.

How do we estimate the parameters β0, β1, . . . , βp for
the multiple linear regression?
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Parameter Estimation

How do we estimate the regression parameters β0, β1, . . . , βp?
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Parameter Estimation

Solution: Minimizing the sum of squares.

The individual errors can be written as
ϵi = yi − β0 − β1xi1 − β2xi2 − . . . − βpxip

The sum of squares therefore is

S(β0, β1, . . . , βp) =
n∑
i=1

ϵ2i =
n∑
i=1

(yi − β0 − β1xi1 − β2xi2 − . . . − βpxip)2

β̂0, β̂1, . . . , β̂p are the constants that minimize S(β0, β1, . . . , βp). Formulating
the minimization problem leads to a system of equations, which are called
the normal equations. The solution is usually derived using matrix notation.

We do not cover the solution in matrix notation in this course. If you are interested, please
ask me about it or see the Appendix to Chapter 3 in RABE5.
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Parameter Estimation

Using the fitted regression parameters, the fitted least squares regression
equation can be noted

Ŷ = β̂0 + β̂1X1 + β̂2X2 + . . . + β̂pXp

The fitted values follow analogously
ŷi = β̂0 + β̂1xi1 + β̂2xi2 + . . . + β̂pxip for i = 1, 2, . . . , n

The residuals are
ei = yi − ŷi for i = 1, 2, . . . , n

An unbiased estimate of the variance σ2 is

σ̂2 =
SSE

n − p − 1
with SSE =

n∑
i=1

(yi − ŷi)2 =
n∑
i=1

e2i

n − p − 1 is called the degrees of freedom and is equal to the number of
observations minus the number of estimated regression coefficients.
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Interpretation

The simple regression equation (only X1) represents a line.
The multiple regression equation represents a plane (X1 and X2) or a
hyperplane (more than two predictors).

library(car) # 3d Visualization of regression plane for two X variables
car::scatter3d(P060$Y,P060$X1, P060$X2)

β0 is the constant coefficient or intercept and results in the value of Y, when
X1 = X2 = . . . = Xp = 0.
The regression coefficient βj has several interpretations:

▶ βj is the change in Y corresponding to a unit change in Xj, when all other
predictors are held constant (ceteris paribus).

▶ βj is also called the partial regression coefficient as it represents the
contribution of Xj to the response variable, after it has been adjusted for the
other predictor variables.
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Example: Supervisor Performance

mod <- lm(Y ~ 1 + X1 + X2, data=P060)
summary(mod)

##
## Call:
## lm(formula = Y ~ 1 + X1 + X2, data = P060)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.789 -5.689 -0.028 6.275 9.973
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.3276 7.1602 2.14 0.041 *
## X1 0.7803 0.1194 6.54 5.2e-07 ***
## X2 -0.0502 0.1299 -0.39 0.702
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 7.1 on 27 degrees of freedom
## Multiple R-squared: 0.683, Adjusted R-squared: 0.66
## F-statistic: 29.1 on 2 and 27 DF, p-value: 1.83e-07
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Your turn
Write down the parameterized
regression equation.



Interpretation

Plugging in the estimated regression coefficients from the output yields:

Ŷ = 15.3276 + 0.7803(X1) − 0.0502(X2) (1)

Lets explore the question what adjusted for actually means:
▶ The coefficient for X1 suggests that each unit of X1 adds 0.7803 to Y, when the

value of X2 is held fix.
▶ The effect of X2 after adjusting for X1 is -0.0502, which means that for each unit

increase of X2 the response variable Y decreases -0.0502 units and the value of
X1 is held fix.

These results can also be obtained iteratively by applying a series of simple
regression models.
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Interpretation

1 Relating Y and X1 to obtain the residuals eY·X1 .

mod1 <- lm(Y ~ 1 + X1, data=P060)
round(coef(mod1),4)

## (Intercept) X1
## 14.3763 0.7546

2 Relating X2 (temporary response) and X1 to obtain residuals eX2·X1 .
mod2 <- lm(X2 ~ 1 + X1, data=P060)
round(coef(mod2),4)

## (Intercept) X1
## 18.965 0.513

3 Relating the residuals eY·X1 to eX2·X1 .
e_y_x1 <- residuals(mod1)
e_x2_x1 <- residuals(mod2)
mod3 <- lm(e_y_x1 ~ 1 + e_x2_x1, data=P060)
round(coef(mod3),4)

## (Intercept) e_x2_x1
## 0.0000 -0.0502
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eY·X1 can be understood as Y with
the linear influence from X1
removed. Analogously eX2·X1 is the
regressor X2 with the partial effect
of X1 removed.



Interpretation

A series of simple linear regressions can reproduce the coefficients (and
standard errors) from a multivariate regression.
The results from simple and multiple linear regression would only be equal if
the regressors (the X’s) were not correlated, which is almost never the case
in practice.
Each regression coefficient βj can be seen as partial regression coefficient
because it represents the contribution of Xj to the response variable Y after
both variables have been adjusted for the linear dependence on the other
regressors.
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Centering and Scaling

The value of the regression coefficient is dependent on the unit of
measurement of the variables.
To obtain unitless regression coefficients, we can center and scale
(e.g. z-transform) our variables
Centering can be achieved by subtracting the mean of the response Y − ȳ or
predictor variables X − x̄.
Scaling can be done by unit-length scaling or standardizing
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Centering and Scaling

Unit LengthScaling for Y

Zy =
Y − ȳ
Ly

with Ly =

√√√√ n∑
i=1

(yi − ȳ)2

Standardizing for Y

Zy =
Y − ȳ
sy

with sy =

√∑n
i=1(yi − ȳ)2

n − 1
Correlations are unaffected by these kind of transformations
β’s change as well as their interpretation, e.g. beta coefficients obtained
after standardizing the variables represent marginal effects of the predictor
variables in standard deviation units
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Centering and Scaling

y <- P060$Y
L_y <- sqrt(sum((y-mean(y))ˆ2))
z_y <- (y - mean(y))/L_y # Unit-length Scaling
y_scaled <- scale(y) # Standardizing by default
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Properties of the Least Squares Estimator

BLUE

Best Linear Unbiased Estimator
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Properties of the Least Squares Estimator

BLUE
Best Linear Unbiased Estimator
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Properties of the Least Squares Estimator

1 For all unbiased estimates that are linear in the observations the least
squares estimators have the smallest variance.

2 The estimator β̂j is normally distributed with mean βj and variance σ2cjj,
where cjj is the j-th diagonal element of the inverse of a matrix known as the
corrected sums of squares and productsmatrix.

3 W = SSE/σ2 has a X 2 distribution with n − p − 1 degrees of freedom and
β̂j’s and σ̂2 are distrbuted independently of each other.

4 The vector β̂ =
(
β̂0, β̂1, . . . , β̂p

)
has a p + 1 dimensional normal distribution

and with mean vector β =
(
β0, β1, . . . , βp

)
and a variance-covariance matrix

with elements σ2cij.

It is due to these properties that we are able to test hypotheses about
individual regression parameters and construct confidence intervals!

25



Multiple Correlation Coefficient

The content discussed for testing the goodness of fit for the simple linear
regression model can easily be extended for the larger regression models
and the following holds also for the multiple regression model:

R2 = [Cor(Y, Ŷ)]2 =
SSR
SST

= 1 − SSE
SST

= 1 −
∑

(yi − ŷi)2∑
(yi − ȳ)2

Sometimes R =
√
R2 is referred to as the multiple correlation coefficient as it

measures the correlation between the response and a set of predictors.
▶ When the model provides a good fit for the data, R2 is close to unity (and∑

(yi − ŷi) will be small).
▶ When the variables X1, X2, . . . , Xp do not have a linear relationship with the

response, the best predicted value for each yi is the mean ȳ (because it
minimizes the sum of squares) and R2 will be near zero.
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Multiple Correlation Coefficient

mod <- lm(Y ~ 1 + X1 + X2 + X3 + X4 +X5 + X6, data=P060)
summary(mod)

##
## Call:
## lm(formula = Y ~ 1 + X1 + X2 + X3 + X4 + X5 + X6, data = P060)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.942 -4.356 0.316 5.543 11.599
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.7871 11.5893 0.93 0.3616
## X1 0.6132 0.1610 3.81 0.0009 ***
## X2 -0.0731 0.1357 -0.54 0.5956
## X3 0.3203 0.1685 1.90 0.0699 .
## X4 0.0817 0.2215 0.37 0.7155
## X5 0.0384 0.1470 0.26 0.7963
## X6 -0.2171 0.1782 -1.22 0.2356
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 7.07 on 23 degrees of freedom
## Multiple R-squared: 0.733, Adjusted R-squared: 0.663
## F-statistic: 10.5 on 6 and 23 DF, p-value: 1.24e-05
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Your turn

What happens with R2 when we
add one or many artificially
generated variables zj ∼ N(0, 1)
that are pure white noise to the
model?



Multiple Correlation Coefficient

mod <- lm(Y ~ 1 + X1 + X2 + X3 + X4 +X5 + X6, data=P060)
mod_summary <- summary(mod)
c(mod_summary$r.square, mod_summary$adj.r.squared)

## [1] 0.7326 0.6628

set.seed(1)
z1 <- rnorm(nrow(P060))
z2 <- rnorm(nrow(P060))
z3 <- rnorm(nrow(P060))
z4 <- rnorm(nrow(P060))
z5 <- rnorm(nrow(P060))

mod_large <- lm(Y ~ 1 + X1 + X2 + X3 + X4 +X5 + X6
+ z1 + z2 + z3 + z4 + z5, data=P060)

mod_large_summary <- summary(mod_large)
c(mod_large_summary$r.square, mod_large_summary$adj.r.squared)

## [1] 0.7739 0.6357
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Multiple Correlation Coefficient

R2a = 1 − SSE/(n − p − 1)
SST/(n − 1)

= 1 − n − 1
n − p − 1

(1 − R2)

The adjusted R2 tries to solve the observed issue by “adjusting” for the
difference in the numbers of variables when judging the goodness of fit.
The R2a cannot be interpreted as the proportion of total variation in Y
accounted for by the predictors.
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Inference for Regression Coefficients

Testing the individual regression coefficients for H0 : βj = β0
j versus

H1 : βj ̸= β0
j can be done using the t-test by comparing the observed value tj

with the appropriate critical value tn−p−1,α/2.

For the two-sided test, H0 is rejected at the significance level α if

|tj| ≥ tn−p−1,α/2 with tj =
β̂j − β0

j

s.e.(β̂j)
An equivalent decision can be made using the p-value and reject H0 if
p(|tj|) ≤ α. The p-value is the probabillity that a random variable hacinf a
Student t-distribution with n-p-1 degrees of freedom is greater than |tj| (the
observed value of the t-test).
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Inference for Regression Coefficients

mod <- lm(Y ~ 1 + X1 + X2 + X3 + X4 +X5 + X6, data=P060)
summary(mod)

##
## Call:
## lm(formula = Y ~ 1 + X1 + X2 + X3 + X4 + X5 + X6, data = P060)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.942 -4.356 0.316 5.543 11.599
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.7871 11.5893 0.93 0.3616
## X1 0.6132 0.1610 3.81 0.0009 ***
## X2 -0.0731 0.1357 -0.54 0.5956
## X3 0.3203 0.1685 1.90 0.0699 .
## X4 0.0817 0.2215 0.37 0.7155
## X5 0.0384 0.1470 0.26 0.7963
## X6 -0.2171 0.1782 -1.22 0.2356
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 7.07 on 23 degrees of freedom
## Multiple R-squared: 0.733, Adjusted R-squared: 0.663
## F-statistic: 10.5 on 6 and 23 DF, p-value: 1.24e-05
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Your turn
Interpret the regression coefficients
(assume α = 0.05).
Y Overall rating of job being done by supervisor
X1 Handles employee complaints
X2 Does not allow special privileges
X3 Opportunity to learn new things
X4 Raises based on performance
X5 Too critical of poor performance
X6 Rate of advancing to better jobs



Hypothesis Testing

1 All the regression coefficients associated with the preditor variables are zero.
2 Some of the regression coefficients are zero.
3 Some of the regression coefficients are equal to each other.
4 The regression parameters satisfy certain specified constraints.

We discuss a general approach for testing all stated hypotheses and illustrate
that for testing if all regression coefficients are zero (option 1). Please see the
recommended literature for the other options.
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Hypothesis Testing

The model that contains all p + 1 parameters will be referred to as the full
model (FM).

Full Model: Y = β0 + β1X1 + β2X2 + . . . + βpXp + ϵ

We are formulating a hypothesis for some coefficients β0, β1, . . . , βp in the
model. By incorporating the hypothesized values in the model we receive
the so called reduced model (RM).

The number of distinct parameters to estimate in the RM is smaller than the
numbers of parameters to estimate in the FM.

Subsequently, we are going to test
H0 : Reduced model is adequate. vs. H1 : Full model is adequate.
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Hypothesis Testing

The main idea of the described approach is testing for differences in
goodness of fit between the FM and RM.
If the reduced model gives as good fit as the full model, the null hypothesis
(H0 : Reduced model is adequate) is not rejected.
The lack of fit can be measured by the sum of squared residuals (SSE), which
we note using the predicted values for yi of the full model ŷi and the reduced
model ŷ∗

i respectively.

SSE(FM) =
∑

(yi − ŷi)2 SSE(RM) =
∑

(yi − ŷ∗
i )2
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Hypothesis Testing

In the full model there are p + 1 regression parameters (β0, β1, . . . , βp) that
need to be estimated. Let‘s suppose that the reduced model contains k
distinct parameters.
SSE(RM) ≥ SSE(FM) must hold, as the additional variables cannot increase
the residual sum of squares.
The difference SSE(RM) − SSE(FM) represents the increase in residual sum of
squares due to fitting the reduced model. If this difference is large, the RM
is inadequate!
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Hypothesis Testing

F =
[SSE(RM) − SSE(FM)]/(p + 1 − k)

SSE(FM)/(n − p − 1)

The ratio above is called the statistic for the F-Test.
We divide SSE(FM) and the discussed difference by their respective degrees
of freedom to compensate for differences in number of parameters and
ensure that the ratio follows a standard statistical distribution
(F-distribution).

▶ FM has p parameters, hence SSE(FM) has n − p − 1 degrees of freedom
▶ RM has k parameters, hence SSE(RM) has n − k degrees of freedom
▶ SSE(RM) − SSE(FM) has (n − k) − (n − p − 1) = p + 1 − k degrees of freedom
▶ Required F-distribution has (n + k − 1) and (n − p − 1) degrees of freedom
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Hypothesis Testing

If the observed F-value is large in comparison to the tabulated value of F
with the respective degrees of freedom, the result is significant at level α.

This means that the reduced model is unsatisfactory and the null hypothesis
(with the suggested values for the β’s) is rejected.

H0 is rejected if
F ≥ F(p+1−k, n−p−1 ;1−α) or p(F) ≤ α

▶ Here F is the observed value of the F-test, F(p+1−k, n−p−1 ;1−α) is the appropriate
critical value obtained from the F table and p(F) is the p-value for the F-Test
(probability that a random variable having an F-distribution and the stated DoF
is greater than the observed F).
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Hypothesis Testing: All Regression Coefficients equal to Zero

RM : H0 : Y = β0 +ϵ

FM : H1 : Y = β0 +β1X1 + β2X2 + . . . + βpXp +ϵ

The residual sum of squares resulting from the full model is SSE(FM) = SSE.
Because the estimate for β0 in the reduced model is β̂0 = ȳ, the residual sum
of squares from the reduced model is SSE(RM) =

∑
(yi − ȳ)2 = SST.

Additionally, SST = SSR + SSE holds so that the F-test reduces to

F =
[SST − SSE]/p
SSE/(n − p − 1)

=
SSR/p

SSE/(n − p − 1)
=
MSR
MSE

38



Hypothesis Testing: All Regression Coefficients equal to Zero

That F-test essentially tests H0 if the regression coefficients (excluding β0)
contribute to the explanation of the response variable.

H0 : β1 = β2 = . . . = βp = 0

The hypothesis is equal to the multiple correlation coefficient R being zero.
So the same hypothesis can be checked using the following where Rp
denotes the multiple correlation coefficient, which is obtained from fitting a
model to n observations with p predictor variables (+ intercept)

F =
R2p/p

(1 − R2p)/(n − p − 1)

Your turn
What is H1?
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Example

mod <- lm(Y ~ 1 + X1 + X2 + X3 + X4 +X5 + X6, data=P060)
summary(mod)

##
## Call:
## lm(formula = Y ~ 1 + X1 + X2 + X3 + X4 + X5 + X6, data = P060)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.942 -4.356 0.316 5.543 11.599
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.7871 11.5893 0.93 0.3616
## X1 0.6132 0.1610 3.81 0.0009 ***
## X2 -0.0731 0.1357 -0.54 0.5956
## X3 0.3203 0.1685 1.90 0.0699 .
## X4 0.0817 0.2215 0.37 0.7155
## X5 0.0384 0.1470 0.26 0.7963
## X6 -0.2171 0.1782 -1.22 0.2356
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 7.07 on 23 degrees of freedom
## Multiple R-squared: 0.733, Adjusted R-squared: 0.663
## F-statistic: 10.5 on 6 and 23 DF, p-value: 1.24e-05

40

Your turn
Calculate F and perform the F-test
to test if all regression coefficients
β1, . . . , β6 are equal to zero. Use
α = 0.05.



Predictions

As with simple linear regression multiple linear regression can be used to either predict the
value of a response or the value of the mean response. The value x0 to be inserted for the
predictor variables now consists of p values so that x0 = (x01, x02, . . . , x0p).

Value of Response & Prediction Limits

The predicted value ŷ0 is given by ŷ0 = β̂0 + β̂1x01 + β̂2x02 + . . . + β̂px0p. Its confidence
interval can be constructed by ŷ0 ± t(n−p−1,α/2) · s.e.(ŷ0).

Mean Response & Confidence Limits

The predicted value µ̂0 is given by µ̂0 = β̂0 + β̂1x01 + β̂2x02 + . . . + β̂px0p. The confidence
interval for that prediction is given by µ̂0 ± t(n−p−1,α/2) · s.e.(µ̂0).

Note: The standard errors require matrix notation so that their derivation is not shown
here. They can, however, be found in the recommended literature.
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