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Introduction

In this chapter we talk about the standard regressions assumptions, the
consequences when violating them and how to detect violations so that we
can focus on the remainder of the course on methods of how to correct or
compensate for violations.
When those assumptions are violated, the discussed and derived results for
making inferences about the regression coefficients do not hold, which
essentially means that conclusions drawn on the corresponding models are
wrong.
The majority of the discussed methods are graphical methods which means
that they may be somewhat subjective here or there, which needs to be
kept in mind when interpreting diagnostic plots.
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Overview

1 Assumptions about the form of the model.
2 Assumptions about the errors.
3 Assumptions about the predictors.
4 Assumptions about the observations.

The properties of the least squares estimators (BLUE) are based on the discussed
assumptions!
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Assumption 1: Model

The model that relates Y and X1, X2, . . . , Xp is assumed to be linear in the
regression parameters β0, β1, . . . , βp so that

Model: Y = β0 + β1X1 + β2X2 + . . . + βpXp + ϵ

Observation: yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + ϵi, i = 1, 2, . . . , n

This assumption is called the linearity assumption.
In simple linear regression checking can be done using a scatterplot of Y
versus X. For multiple linear regression there are other plotting techniques
which we will discuss.
When the linearity assumption does not hold, transforming the data may
lead to linearity (transformations are discussed at a later point).
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Assumption 2: Errors

The errors ϵ1, ϵ2, . . . , ϵn are assumed to be independently and identically
distributed (iid) normal random variables each with mean zero and common
variance σ2. This implies:

▶ Normality Assumption: The error ϵi, i = 1, 2, . . . , n has a normal distribution.
▶ The errors ϵ1, ϵ2, . . . , ϵn have mean zero.
▶ Constant Variance Assumption: The errors have the same (but unknown)

variance σ2. When this assumption does not hold we have the
heteroscedasticity problem.

▶ Independent errors Assumption: ϵ1, ϵ2, . . . , ϵn are independent of each other
(pairwise covariances are zero). Violations lead to the autocorrelation problem.
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Assumption 3: Predictors

There are three assumptions for the predictor variables.
▶ The predictor variables X1, X2, . . . , Xp are nonrandom. This means the values

x1j, x2,j, . . . , xnj with j = 1, 2, . . . , p are fixed (which is usually only fully satisfied
under experimental conditions). In practice the results presented hold, but
results are conditional on the data.

▶ The values x1j, x2,j, . . . , xnj are measured without error (which is hardly ever
satisfied). In practice it is sufficient, when the measurement error is small
compared to the random error ϵi.

▶ The predictor variables X1, X2, . . . , Xp are assumed to be linearly independent
of each other. This assumption guarantees the uniqueness of the least squares
solution. If this assumption is violated this is referred to as the collinearity
problem.

The first two assumptions cannot be checked and do not play a role in our analysis. They
have to be kept in mind when collecting data.
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Assumption 4: Observations

All observations are equally reliable and have an approximately equal role in
determining the regression results. This means that they are equally relied
on when drawing conclusions.

Conclusion

Small or minor violations of the underlying assumptions do not invalidate the
inferences or conclusions drawn from the analysis. Gross validations, however,
can seriously distort conclusions. It is essential to investigate all signs of
assumption validations by always checking the structure of the residuals and
the data patterns at least using graphs!
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Residuals

Analysing residuals is a simple and effective method for detecting model
deficiencies in regression analysis. In most analyses it is probably themost
important part of an analysis.
Residual plots may lead to suggestions for structure or point to information
in the data that might be missed or overlooked. Those clues can lead to a
better understanding (and possibly a better model) of the underlying
process.
Starting point for the analysis are the ordinary least squares residuals that
can be calculated after obtaining the fitted values:

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + . . . + β̂pxip
ei = yi − ŷi for i = 1, 2, . . . , n
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Residuals

The fitted values can also be written as function of the predictor variables,
where pij only depends on the predictor variables (essentially values from
the hat matrix P).

ŷi = pi1y1 + pi2y2 + . . . + pinyn

When i = j the value pii represents the weight (leverage) given to yi in
determining the i-th fitted value ŷi. The n leverage values p11, p22, . . . , pnn
can be obtained by

pii =
1
n

+
(xi − x̄)2∑

(xi − x̄)2

A high leverage value indicates some "extremeness" in X.
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Residuals

The ordinary least squares residuals e1, e2, . . . , ep do not have unequal
variances Var(ei) = σ2(1 − pii). Analyzing requires standardized residuals by
calculating

zi =
ei

σ
√
1 − pii

This requires an unbiased estimate for the unknown standard deviation σ of
ϵ for which we have two unbiased estimates to choose from

σ̂2 =
∑

e2i
n − p − 1

=
SSE

n − p − 1
with σ̂2

(i) =
SSE(i)

(n − 1) − p − 1
=

SSE(i)

n − p − 2

SSE(i) is the sum of squared residuals when the i-th observation is left out so
that the model is fitted using n − 1 observations.
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Residuals

The choice of variance estimates results in two different types of residuals,
although both are unbiased estimates.

Internally studentized residuals (using σ̂2)

ri =
ei

σ̂
√
1 − pii

with σ̂2 =
SSE

n − p − 1

Externally studentized residuals (using σ̂2
(i))

r∗i =
ei

σ̂(i)
√
1 − pii

with σ̂2
(i) =

SSE(i)

n − p − 2

Called externally studentized because ei is not involved in (external to) σ̂2
(i).

In practice the difference between ri and r∗i is small and both could be used, so
the difference is ignored in the following notation.
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Graphical Methods

Dimensionality:

One-dimensional graphs, indicate the distribution of a particular variable
(e.g. symmetry, skewness) and allow identification of outliers.
Two-dimensional graphs allow exploration of relationships (by pairing
variables) and general patterns.

Step in Model Selection Process:

Graphs before fitting a model, to e.g. correct data errors, select variables
and preparation for model selection.
Graphs after fitting a model to check assumptions and assessing the
goodness of fit.
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Example: Hamiltons Data

P103

## Y X1 X2
## 1 12.37 2.23 9.66
## 2 12.66 2.57 8.94
## 3 12.00 3.87 4.40
## 4 11.93 3.10 6.64
## 5 11.06 3.39 4.91
## 6 13.03 2.83 8.52
## 7 13.13 3.02 8.04
## 8 11.44 2.14 9.05
## 9 12.86 3.04 7.71
## 10 10.84 3.26 5.11
## 11 11.20 3.39 5.05
## 12 11.56 2.35 8.51
## 13 10.83 2.76 6.59
## 14 12.63 3.90 4.90
## 15 12.46 3.16 6.96
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Graphs before fitting a Model

1 Boxplot
2 Histogram
3 Pairsplot

17



Boxplot

boxplot(P103)
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Histogram

hist(P103$X2, main = "", ylab = "Häufigkeit", xlab = "")
rug(P103$X2)
box()
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Pairsplot

pairs(P103, upper.panel=panel.cor)
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Pairsplot

GGally::ggpairs(P103)
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Pairsplot

Interpretation:

The pairwise correlation should always be interpreted in conjunction with
the scatter plots.

▶ The correlation coefficient only measures linear dependence.
▶ The correlation coefficient is non-robust and may be substantially influenced by

few data points.

The appearence of the scatter plot only serves as an indication of the results
to be expected.

▶ In simple linear regression the plot of Y and X is expected to show a linear
pattern.

▶ In mulitple linear regression the scatter plots between Y and each X may or
may not show a linear pattern.

The absence of a linear pattern does not invalidate the linear model!
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Graphs after fitting a Model

1 Graphs for checking the linearity and normality assumptions
2 Graphs for the detection of outliers and influential observations
3 Diagnostic plots for the effect of variables
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Model Fitting lm()

mod <- lm(Y ~ 1 + X1 + X2, data=P103)
summary(mod)

##
## Call:
## lm(formula = Y ~ 1 + X1 + X2, data = P103)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.01363 -0.00945 -0.00228 0.00863 0.01632
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.51541 0.06114 -73.8 <2e-16 ***
## X1 3.09701 0.01227 252.3 <2e-16 ***
## X2 1.03186 0.00368 280.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0107 on 12 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 3.92e+04 on 2 and 12 DF, p-value: <2e-16
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Model Fitting olsrr::ols_regress()

mod <- olsrr::ols_regress(Y ~ 1 + X1 + X2, data=P103)
mod

## Model Summary
## ---------------------------------------------------------------
## R 1.000 RMSE 0.010
## R-Squared 1.000 MSE 0.000
## Adj. R-Squared 1.000 Coef. Var 0.089
## Pred R-Squared 1.000 AIC -88.861
## MAE 0.009 SBC -86.029
## ---------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
## AIC: Akaike Information Criteria
## SBC: Schwarz Bayesian Criteria
##
## ANOVA
## ----------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ----------------------------------------------------------------------
## Regression 9.007 2 4.504 39222.343 0.0000
## Residual 0.001 12 0.000
## Total 9.009 14
## ----------------------------------------------------------------------
##
## Parameter Estimates
## -----------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -----------------------------------------------------------------------------------------
## (Intercept) -4.515 0.061 -73.851 0.000 -4.649 -4.382
## X1 3.097 0.012 2.064 252.314 0.000 3.070 3.124
## X2 1.032 0.004 2.292 280.079 0.000 1.024 1.040
## -----------------------------------------------------------------------------------------
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Model Presentation: Stargazer

mod <- lm(Y ~ 1 + X1 + X2, data=P103)
stargazer::stargazer(mod, header=F, single.row = T)

Table 2

Dependent variable:

Y

X1 3.097∗∗∗ (0.012)
X2 1.032∗∗∗ (0.004)
Constant −4.515∗∗∗ (0.061)

Observations 15
R2 1.000
Adjusted R2 1.000
Residual Std. Error 0.011 (df = 12)
F Statistic 39,222.000∗∗∗ (df = 2; 12)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Model Presentation: Texreg

mod <- lm(Y ~ 1 + X1 + X2, data=P103)
texreg::texreg(mod)

Model 1
(Intercept) −4.52∗∗∗

(0.06)
X1 3.10∗∗∗

(0.01)
X2 1.03∗∗∗

(0.00)
R2 1.00
Adj. R2 1.00
Num. obs. 15
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 3: Statistical models
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Linearity and Normality

Residual Histogram: Under the assumptions the histogram should resemble
a normal distribution with symmetric shape and most observations around
the center and few observations in the tails.
QQ-Plot: Plot of the residuals versus the normals scores, which are what we
would expect to obtain if the residuals were taken from a normal distribution.
Under normality this plot should resemble a (nearly) straight line.
Residuals vs. Predictors: The residuals should be uncorrelated with each of
the predictors. If the assumptions hold, the plot should be a random scatter
of points. Any pattern indicates a violation of an assumption, which often
can be fixed using transformations.
Residuals vs. Fitted: The residuals should also be uncorrelated with the
fitted values, therefore this plot should also be a random scatter of points.
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Histogram

hist(residuals(mod), density = )

Histogram of residuals(mod)
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QQ-Plot (Standardized Residuals)

qqnorm(rstandard(mod))
qqline(rstandard(mod))
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Standardized Residuals vs. Predictors

par(mfrow=c(1,2))
plot(y=rstandard(mod),x=P103$X1)
plot(y=rstandard(mod),x=P103$X2)
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Standardized Residuals vs. fitted Values

par(mfrow=c(1,1))
plot(y=rstandard(mod), x=fitted(mod))
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Leverage, Influence and Outliers

We want to ensure that the model is not overly determined by one or a few
observations. In multiple linear regression this cannot be simply detected
graphically.
When identifiying influential data points (points that drag the regression line
in their direction) looking at residuals does not necessarily help.
Influential points can be identified, when the regression coefficients (fitted
values, t-Tests, etc) change heavily, when we omit these points while
estimating the model.
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Outliers

Outliers in the Response Variable: Observations with large standardized
residuals are outliers in the response variable as they lie far from the fitted
line (in Y direction). Outliers indicate a model failure for these observations.
Outliers in the Predictors: Outliers can also occur in the X-Space. The
leverage values pii allow to measure these discrepancies (based on distance
from x̄) and are called high-leverage points. It should be checked if those
points are also influential before they are treated.

Inspecting the residuals is necessary but not sufficient as high-leverage points
(usually twice the average size of (p + 1)/n) usually have small residuals.
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Example: River Data

mod <- lm(Nitrogen ~ 1 + ComIndl, data = P010)
plot(y=P010$Nitrogen, x=P010$ComIndl, ylab="Nitrogen Concentration (mg/l)",

xlab="Commercial and Industrial Land Usage (%)")
abline(mod)
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Example: River Data

round(cbind(obs=P010$ComIndl,residuals=rstandard(mod), leverage=hatvalues(mod)),2)

## obs residuals leverage
## Olean 0.29 0.03 0.05
## Cassadaga 0.09 -0.05 0.07
## Oatka 0.58 1.95 0.05
## Neversink 1.98 -1.85 0.25
## Hackensack 3.11 0.16 0.67
## Wappinger 0.56 0.67 0.05
## Fishkill 1.11 1.92 0.08
## Honeoye 0.24 1.57 0.06
## Susquehanna 0.15 -0.10 0.06
## Chenango 0.23 0.38 0.06
## Tioughnioga 0.18 0.75 0.06
## West Canada 0.16 -0.81 0.06
## East Canada 0.12 -0.83 0.06
## Saranac 0.35 -0.83 0.05
## Ausable 0.35 -0.94 0.05
## Black 0.15 -0.48 0.06
## Schoharie 0.22 -0.72 0.06
## Raquette 0.18 -0.50 0.06
## Oswegatchie 0.13 -1.03 0.06
## Cohocton 0.13 0.57 0.06

36

A small residual value is
desireable and the standardized
residuals show no outlier.
However, the small residual is
not due to a good fit, but due to
high leverage of the
observations for Neversink and
Hackensack.



Example: River Data

par(mfrow=c(1,2))
plot(rstandard(mod), main="Index plot of standardized residuals")
plot(hatvalues(mod), main="Index plot fo leverage values")
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Example: River Data

olsrr::ols_plot_resid_stand(mod)

Threshold: abs(2)
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Influence

The influence of an observation may be measured by the effects on the fit
when it is omitted from the data in the fitting process.
β̂0(i), β̂1(i), . . . , β̂p(i) denote the regression coefficients obtained when the i-th
observation is deleted. ŷ1(i), ŷ2(i), . . . , ŷn(i) and σ̂2

(i) denote the predicted
values and residual mean square error when dropping the i-th observation
respectively. The resulting observation equation for the model follows by

ŷm(i) = β̂0(i) + β̂1(i)xm1 + . . . + β̂p(i)xmp

Measures to assess influence usually look at differences produced in
β̂j − β̂j(i) or ŷj − ŷj(i).
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Cook’s Distance

Cook’s distancemeasures the difference between the regression coefficients
obtained from the full data and the regression coefficients obtained by
deleting the i-th observation.
The influence of the i-th observation for i = 1, . . . , n is given by

Ci =
∑n

j=1(ŷj − ŷj(i))2

σ̂2(p + 1)
=

r2i
p + 1

· pii
1 − pii

Cook’s distance is a product of the squared residual and the so called
potential function pii/(1 − pii).
If Ci is large omitting a data point will cause large changes in the model.
Points are said to be influential when their Cook’s distance meets or exceeds
the 50% point of the F-distribution with p + 1 and n − p − 1 degrees of
freedom. A rule of thumb is do investigate points where Ci ≥ 1.
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Cook’s Distance

olsrr::ols_plot_cooksd_chart(mod)
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Welsch and Kuh Measure (DFITS)

The measure proposed by Welsch and Kuh is the scaled difference between
the i-th fitted value obtained from the full data and the i-th fitted value
obtained by deleting the respective observation.

DFITSi =
ŷi − ŷi(i)
σ2

(i)
√
pii

= r∗i

√
pii

1 − pii

Points with |DFITSi| > 2
√

(p + 1)/(n − p − 1) are usually classified as
influential.
Ci and DFITSi are functions of the residual and leverage values. It is often
sufficient to inspect either the Cook’s distance or DFITS.
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Welsch and Kuh Measure (DFITS)

olsrr::ols_plot_dffits(mod)
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What to do with outliers?

Outliers and influential observations should not routinely be deleted or
automatically down-weighted.
Points with high leverage and high influence are not necessarily bad
observations! They can be an indication of model misspecification
(e.g. non-linearity in the data) or show that the data did not come from a
normal polulation. In those cases they may be the most informative data
points.
Each outlier should be inspected with care and checked individually. If data
points are removed this should be documented in the research including
reasons for the decision.
Another option is to use robust regression where less weight is given to data
points with high leverage.
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Role of Variables in Regression Models

Predictors are usually sequentially introduced into a regression equation.
Given a model that contains p predictors, what is the effect of deleting (or
adding) one of the variables from (or to) the model?
One indication can be obtained by the t-test. If the t-value is large in
absolute terms, the variables will be retained, otherwise omitted.
**The results of the t-test will only be valid if the underlying assumptions
hold, therefore additional graphs should be inspected when deciding
whether or not to include a variable in the regression model.
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Example: Scottish Hills Races Data
P120

## Time Distance Climb
## Greenmantle New Year Dash 965 2.5 650
## Carnethy 2901 6.0 2500
## Craig Dunain 2019 6.0 900
## Ben Rha 2736 7.5 800
## Ben Lomond 3736 8.0 3070
## Goatfell 4393 8.0 2866
## Bens of Jura 12277 16.0 7500
## Cairnpapple 2182 6.0 800
## Scolty 1785 5.0 800
## Traprain Law 2385 6.0 650
## Lairig Ghru 11560 28.0 2100
## Dollar 2583 5.0 2000
## Lomonds of Fife 3900 9.5 2200
## Cairn Table 2648 6.0 500
## Eildon Two 1616 4.5 1500
## Cairngorm 4335 10.0 3000
## Seven Hills of Edinburgh 5905 14.0 2200
## Knock Hill 4719 3.0 350
## Black Hill 1045 4.5 1000
## Creag Beag 1954 5.5 600
## Kildoon 957 3.0 300
## Meall Ant-Suiche 1674 3.5 1500
## Half Ben Nevis 2859 6.0 2200
## Cow Hill 1076 2.0 900
## North Berwick Law 1121 3.0 600
## Creag Dubh 1573 4.0 2000
## Burnswark 2066 6.0 800
## Largo 1714 5.0 950
## Criffel 3030 6.5 1750
## Achmony 1257 5.0 500
## Ben Nevis 5135 10.0 4400
## Knockfarrel 1943 6.0 600
## Two Breweries Fell 10215 18.0 5200
## Cockleroi 1686 4.5 850
## Moffat Chase 9590 20.0 5000
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Example: Scottish Hills Races Data

lapply(P120, summary)

## $Time
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 957 1680 2385 3473 4118 12277
##
## $Distance
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.00 4.50 6.00 7.53 8.00 28.00
##
## $Climb
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 300 725 1000 1815 2200 7500
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Example: Scottish Hills Races Data

mod <- lm(Time ~ 1 + Distance + Climb, data=P120)
summary(mod)

##
## Call:
## lm(formula = Time ~ 1 + Distance + Climb, data = P120)
##
## Residuals:
## Min 1Q Median 3Q Max
## -973 -428 -71 142 3907
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -539.483 258.161 -2.09 0.045 *
## Distance 373.073 36.068 10.34 9.9e-12 ***
## Climb 0.663 0.123 5.39 6.4e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 881 on 32 degrees of freedom
## Multiple R-squared: 0.919, Adjusted R-squared: 0.914
## F-statistic: 182 on 2 and 32 DF, p-value: <2e-16
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Added-Variable Plot

The added-variable plot enables us to see the magnitude of the regression
coefficient of the new variable that is being considered for inclusion.
The slope of the least squares line representing the points in the plot is equal
to the estimated regression coefficient of the new variable. Additionally, the
plot shows data points that may be influential for this magnitude.
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Added-Variable Plot

The added variable plot is a plot between two pairs of residuals: the
residuals when Y is regressed on predictors except Xj versus the residuals
when regressing Xj on all other predictors.

▶ First set of residuals corresponds to the remainder of Y that cannot be
explained by the other regressors.

▶ Second set of residuals corresponds to the part of Xj that cannot be explained
by the other predictors.

▶ The resulting slope is equal to β̂j and essentially a visualization that is
equivalent to the interpretation as partial regression coefficient.
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Added-Variable Plot

olsrr::ols_plot_added_variable(mod)
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Added Variable Plots
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Your turn
Do both variables contribute
significantly to the model? Is
there anything unusual that
should be investigated further?



Effects of an additional Predictor

When a new regressor is introduced two questions should be answered:
▶ Is the regression coefficient of the new variable significant (different from zero)?
▶ Does the introduction of the new variable substantially change the regression

coefficients that are already in the model.
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Effects of an additional Predictor

Option A: insignificant and almost no change in coefficients → Should not
be included unless theory dictates inclusion.
Option B: significant and subtantial changes in coefficients. → Should be
included, but needs to be checked for collinearity.
Option C: significant but no substantial coefficient changes → Ideal
condition as variable is uncorrelated with other regressors, variable should
be retained.
Option D: insignificant but substantial coefficient changes → indicates
collinearity, corrective actions are required before discussion.
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