Sudwestfalen
University of Applied Sciences @

Fachhochschule l [ ]

Statistical Modeling

CH.4 - Qualitative Variables

2023 | | Prof. Dr. Buchwitz



Organizational Information



Course Contents

Session  Topic

Simple Linear Regression

Multiple Linear Regression
Regression Diagnostics
Qualitative Variables as Predictors
Transformation of Variables
Weighted Least Squares
Correlated Errors

Analysis of Collinear Data
Working with Collinear Data
Variable Selection Procedures

NV 00O NN AAWDN

NN
= O

Logistic Regression
Further Topics

[N
N




Qualitative Variables as Predictors



Introduction

m Qualitative or categorical variables (such as gender, marital status, etc.) are
useful predictors and are usually called indicator or dummy variables.

m Those variables usually only take two values, 0 and 1, which signify that the
observation belongs to one of two possible categories.

m The numerical values of indicator variables do not reflect quantitative
ordering.

m Example Variable: Gender, coded as 1 for female and 0 for male.

m Indicator variables can also be used in a regression equation to distinguish
between three or more groups.

m The response variable is stil a quantiative continuous in all discussed cases.



Example: Salary Survey Data

P130

Your

Salary survey of computer
professionals with objective to
identify and quantify variables that
determine salary differentials.

S Salary (Response)

X Experience, measured in years
E Education, 1 (High School/HS), 2
(Bachelor/BS), 3 (Advanced
Degree/AD)

M Management 1 (is Manager), 0
(no Management Responsibility)

X
13876 1
11608 1
18701 1
11283 1
11767 1
20872 2
11772 2
10535 2
## 9 121956 2
## 10 12313 3
## 11 14975 3
## 12 21371 3
## 13 19800 3
## 14 11417 4
## 15 20263 4
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#*
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## 16 13231
## 17 12884
## 18 13245
## 19 13677
## 20 15965
## 21 12336
## 22 21352
## 23 13839
## 24 22884
## 25 16978
## 26 14803
## 27 17404
## 28 22184
## 29 13548
## 30 14467 10
## 31 15942 10
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Example: Salary Survey Data

m Experience: We assume linearity, which means that each additional year is
worth a fixed salary increment.
m Education: Can be used in a linear or categorial form.

» Using the variable in its raw form would assume that each step up in education
is worth a fixed increment in salary. This may be too restrictive.

» Using education as categorical variable can be done by defining two indicator
variables. This allows to pick up the effect of education wether it is linear or
not.

® Management: Is also an indicator variable, that allows to distinguish
between management (1) an regular staff positions (0).



Indicator Variables

When using indicator variables to represent a set of categroies, the number of
these variables required is one less than the number of categories. For education
we can create two indicators variables:

{1, if the i-th person is in the HS category
=

0, otherwise.

. {1, if the i-th person is in the BS category
2 =

0, otherwise.

)

These two variables allow representing the three groups (HS, BS, AD).

HS:E1=1,E2=O,BSZE1=O,E2=1,AD2E1=O,E2=O



Indicator Variables

m The regression equation from the Salary Survey Data is:

S=0o+BiX+1E1+ B2+ 1M + e



Indicator Variables

m The regression equation from the Salary Survey Data is:

S=0o+BiX+1E1+ B2+ 1M + e

m There is a different valid regression equation for each of the six (three
education and two managment) categories.

Regression Equation

=(Bo+v) +P1X+e

= (Bo+7y1+61) + X +e
= (
= (

Category

Bo +72) + 1 X +e
Bo+y2+01) + B1X+e
Bo +B1X+e
=(Bo+0d1) +[PiX+e

E M
1 0 S
1 1 S
2 0 S
2 1 S
3 0 S
3 1 S
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Indicator Variables

d <- P130 ur turn
d$E1 <- as.numeric(d$E 1)

9852 < as mumeric(aSE = 2) Interpret the regression

mod <- Im(S ~ 1 + X + E1 + E2 + M, d)

ey coefficients. Assume that the
residual patterns are

## .

o @i satisfactory.

## 1lm(formula = S ~ 1 + X + E1 + E2 + M, data = d)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1884.6 -653.6 22.2 844.9 1716.5

##

## Coefficients:

## Estimate Std. Error t value Pr(>ltl|)

## (Intercept) 11031.8 383.2 28.79 < 2e-16 **¥x

## X 546.2 30.5 17.90 < 2e-16 **x*

## E1 -2996.2 411.8 =7.28 6.7e-09 **x

## E2 147.8 387.7 0.38 0.7

## M 6883.5 313.9 21.93 < 2e-16 **x

## ———

## Signif. codes: 0 ’*xx’ 0.001 ’*x’ 0.01 ’*’ 0.05 .’ 0.1’ * 1

##

## Residual standard error: 1030 on 41 degrees of freedom
## Multiple R-squared: 0.957, Adjusted R-squared: 0.953
## F-statistic: 227 on 4 and 41 DF, p-value: <2e-16
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Model Comparison

Table 3

Dependent variable:

S

(1) (2)
X 546.200*** (30.520) 570.100*** (38.560)
E1 —2,996.000*** (411.800)
E2 147.800 (387.700)
E 1,579.000*** (262.300)
M 6,884.000*** (313.900) 6,688.000*** (398.300)
Constant 11,032.000*** (383.200) 6,963.000%** (665.700)
Observations 46 46
R? 0.957 0.928
Adjusted R? 0.953 0.923
Residual Std. Error 1,027.000 (df = 41) 1,313.000 (df = 42)
F Statistic 226.800*** (df = 4; 41) 179.600*** (df = 3; 42)
Note: *p<0.1; **p<0.05; ***p<0.01

11



Regression Diagnostics

Before we continue we check the residuals

Residuals vs. Years of Experience
Residuals vs. Categories from Dummys

12



Regression Diagnostics

plot(x = d$X, y = rstandard(mod), pch=19,
ylab="Residuals", xlab = "X",
main = "Standardized Residuals vs. Years of Experience xm")

Standardized Residuals vs. Years of Experience (X)
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d$cat <- factor((pasteO("E=",d$E,"&M=",d$M)))
plot(x = as.numeric(d$cat), y = rstandard(mod), pch=19, xaxt="n",
ylab="Residuals", xlab = "Category",
main = "Standardized Residuals vs. Education-Management Category")
axis(1,at=1:6,labels=levels(d$cat))

Standardized Residuals vs. Education—Management Category
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Category

E=3&M=1
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Regression Diagnostics

What is wrong with the residuals:

m Depending on the category the residuals are almost entirely positive or
negative.

m The pattern of the residuals is highly moderated by the associated group
(education-management category). This makes it clear that the
combinations of education and management have not been treated
sufficiently in the model.

m The residual plots provide evidence that the effects of education and
management status on salary determination are not additive.

The multiplicative pattern needs to be embedded in the model!

15



Interaction Effects

m Interaction effects are multiplicative effects that allow capturing nonadditive
effects in variables.

m Interaction variables are products of existing indicator variables.

m Using the Salary Survey Data this can be achieved by creating the two
interaction effects (E; - M) and (E, - M) and adding them to the model.

m The interaction effects do not replace the indicator variables.

16



Interaction Effects

mod <- Im(S ~ 1 + X + E1 + E2 + M + E1*M + E2*M, data=d) Y ur turn

summary (mod) . .
i Is that model sufficient?

#it

## Call:

## Im(formula = S ~ 1 + X + E1 + E2 + M + E1 * M + E2 * M, data = d)

#t

## Residuals:

##  Min 1Q Median 30  Max

## -928.1 -46.2 24.3 65.9 204.9

#

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11203.43 79.07 141.70 < 2e-16 ***

## X 496.99 5.57 89.28 < 2e-16 xxx

## E1 -1730.75 105.33 -16.43 < 2e-16 *xx

## E2 -349.08 97.57 -3.58 0.00095 *xx

# M 7047.41 102.59  68.70 < 2e-16 xxx

## E1:M -3066.04 149.33 -20.53 < 2e-16 *xx

## E2:M 1836.49 131.17  14.00 < 2e-16 *xx

# -

## Signif. codes: 0 ’x*x’ 0.001 ’#%’ 0.01 ’%’ 0.05 ’.” 0.1 > ’ 1

#it

## Residual standard error: 174 on 39 degrees of freedom
## Multiple R-squared: 0.999, Adjusted R-squared: 0.999
## F-statistic: 5.52e+03 on 6 and 39 DF, p-value: <2e-16
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Regression Diagnostics

summary (rstandard (mod))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -5.773 -0.286 0.150 0.001 0.418 1.277

Standardized Residuals vs. Standardized Residuals vs.
Years of Experience (X) Education—Management Category
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Regression Diagn

d$res <- residuals(mod)
d$res_std <- rstandard(mod)
tail(d, n=15)

## S X EMELE2 cat res res_std
## 32 23174 10 3 1 0 O E=3&M=1 -46.72 -0.2885
## 33 23780 10 2 1 0 1 E=2&M=1 -928.13 -5.7735
## 34 25410 11 21 0 1 E=2&M=1 204.89 1.2773
## 35 14861 11 1 0 1 0 E=1&M=0 -78.54 -0.4796
## 36 16882 12 2 0 0 1 E=24M=0 63.80 0.3866
## 37 24170 12 3 1 0 O E=3&M=1 -44.69 -0.2784
## 38 15990 13 1 0 1 0 E=1&M=0 56.48 0.3465
## 39 26330 13 21 0 1 E=2&M=1 130.91 0.8226
## 40 17949 14 2 0 0 1 E=2&M=0 136.83 0.8383
## 41 25685 16 31 0 0 -0.1316
## 42 27837 16 21 0 1 0.9437
## 43 18838 16 20 0 1 0.1983
## 44 17483 16 1 0 1 0 0.3648
## 45 19207 17 20 0 1 -0.6047
## 46 19346 20 1 0 1 0 -0.4310

d <- d[-33, 1 # Remove problematic observation

19



Interaction Effects

Note: The level accuracy with which the model explains the data

:: Model§Sinnary is very rare! Usually Goodness of fit indicators are worse.
## R 1.000 RMSE 67.119

## R-Squared 1.000 Coef. Var 0.392

## Adj. R-Squared 1.000 MSE 4504.951

## Pred R-Squared 1.000 MAE 51.794

##

## ANOVA

##

## Sum of

## Squares DF Mean Square F Sig.

##

## Regression 957607113.080 6 159601185.513 35427.955 0.0000

## Residual 171188.120 38 4504.951

## Total 957778301.200 44

##

## Parameter Estimates

##

## model Beta Std. Error Std. Beta t Sig lower upper
##

## (Intercept) 11199.714 30.533 366.802 0.000 11137.902 11261.525
## X 498.418 2.152 0.557 231.640 0.000 494.062 502.774
## E1 -1741.336 40.683 -0.304 -42.803 0.000 -1823.693 -1658.979
## E2 -357.042 37.681 0.052 -9.475 0.000 -433.324 -280.761
## M 7040.580 39.619 0.738 177.707 0.000 6960.376 7120.785
## E1:M -3051.763 57.674 -0.149 -52.914 0.000 -3168.519 -2935.008
## E2:M 1997.531 51.785 0.103 38.574 0.000 1892.697 2102.364
##

20



Interaction Effects

Note: The notation is slightly different here as the equations are
automatically generated. However, it does not really matter
whether you use a 3, & or any other greek letter for the
(interaction) effects.

mod <- 1Im(S ~ 1 + X + E1 + E2 + M + E1*M + E2*M, data=d)
equatiomatic::extract_eq(mod, use_coefs=F, intercept="beta", wrap=T)

S = Bo + 1(X) + B2(E1) + B3(E2) +
B4(M) + Bs(E1 X M) + B4(E2 X M) + ¢

equatiomatic::extract_eq(mod, use coefs=T, coef digits=4, wrap=T)

o~

S =11199.7138 + 498.4178(X) — 1741.3359(E1) — 357.0423(E2) +
7040.5801(M) — 3051.7633(E1 X M) + 1997.5306(E2 X M)

21



Interaction Effects

Your Turn

Compare the models mod1, mod2
and mod3. Use them to calculate the
base salaries (no experience) for

# Data Preparation each of the six possible

d <- P130[-33, ] education-management categories.
d$cat <- factor((pasteO("E=",d$E,"&M=",d$M)))
d$E.fac <- factor(d$E)

# Model estimation

modl <- Im(S ~ 1 + X + E.fac + M + E.fac*M, d)
mod2 <- 1m(S ~ 1 + X + cat, d)
mod3 <- 1m(S ~ 1 + X + E.fac*M, d)

22



Interaction Effects

Category E M Estimated Base Salary 95% Cl Low 95% Cl High
1 1 0 9458 9396 9521
2 2 1 19881 19814 19947
3 3 0 11200 11138 11262
4 1 1 13447 13383 13511
5 2 0 10843 10790 10896
6 3 1 18240 18183 18298

m All models lead to the same estimates for the base salaries. This shows that
from a technical point using the cat variable (instead of the intercation
effects) allows to capture the variation in the data.

m ltis still beneficial to use interaction effects as we did, because this allows
to separate the effects of the three sets of predictor variables education,
management and education-management interaction.

23



Systems of Regression Equations

A data set may consist of two or more distinct subsets, which may require
individual regression equations to avoid bias. Subsets may occur cross-sectional
or over time and need to be treated differently:

m Cross-Sectional Data
Each group has a separate regression model.
The models have the same intercept but different slopes.
the models have the same slope but different intercepts.
m Time Series Data

Calendar Effects, e.g. Seasonality
Stability of regression parameters over time

24



Example: Preemployment Test

P140 TEST Score on the preemployment
test.

ST ACER R RACE Dummy to indicate if

## 1 0.28 1 1.83

#2 097 1 4.5 individual is part of a minority (1) or

## 3 1.26 1 2.97

## 4 2.46 1 8.14 not (0)

## 5 2.51 1 8.00 .

G e 4 S JPERF Job Performance Ranking

## 7 1.78 1 7.53 .

w5 121 1 208 after 6 weeks on the job.

## 9 1.63 1 5.00

## 10 1.98 1 8.04

## 11 2.36 0 3.25

## 12 2.11 0 5.30

## 13 0.45 0 1.39

## 14 1.76 0 4.69

## 15 2.09 0 6.56

## 16 1.50 0 3.00

## 17 1.25 0 5.85

## 18 0.72 0 1.90

## 19 0.42 0 3.85

## 20 1.53 0 2.95

25



Example: Preemployment Test

For simplicity and generality we refer to the job performance as Y and the score
on the preemployment test as X. We want to compare the following two models:

Model 1 (Pooled): Vi = Bo + Baxij + €jj

Model 2 (Minority): ¥ir = Bor + BuaXin + €
Model 2 (non Minority): Yi2 = Boz2 + B1aXia + €2

26



Example: Preemployment Test

Job Performance

0.5 1.0 15 2.0

Preemployment Test Score

25

27



Example: Preemployment Test

Job Performance
°
o

T T T T T
0.5 1.0 43 2.0 25

Preemployment Test Score
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Example: Preemployment Test

Job Performance

T T T T T
0.5 1.0 43 2.0 25

Preemployment Test Score
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Example: Preemployment Test

When different models are required for the groups, this would
imply that the required score in the preemployment test that is
needed to result in (minimum) job performance (horizontal
dashed line) needs to be distinguished by group (vertical dashed
lines).

Job Performance

0.5 1.0 15 2.0 25

Preemployment Test Score

30



Models with different Slopes and different Intercepts

m What we want to test the Preemployment Test data for are differences in
intercept and slope using the following Null.

Ho : B11 = B2, Bor = Poz
m This test can be performed using an interaction term by using a variable z;

that takes the value 1 if an individual is part of a minority group and 0
otherwise. This leads to two relevant models:

Model 1 (Pooled): yi = Bo + X + €
Model 3 (Interaction): Yii = Bo * Baxij + vzip + 8(zij - Xi) + €jj

m This model is equivalent to the previously discussed Model 2.

31



Models with different Slopes and different Intercepts

Model 1 Model 2 Model 2 Model 3

Pooled Minority White Interaction
(Intercept) 1.03 0.10 2.01 2.01
(0.87) (1.04) (1.13) (1.05)
TEST 2.36™** 3.31%** 1.31 1.31
(0.54) (0.62) (0.72) (0.67)
RACE —1.91
(1.54)
TEST:RACE 2.00
(0.95)
R? 0.52 0.78 0.29 0.66
Adj. R? 0.49 0.75 0.20 0.60
Num. obs. 20 10 10 20

***p < 0.001; **p < 0.01; *p < 0.05

Table 5

m Model 1 can be seen as a restriced version (RM) of model 3, the full model
(FM), with v = 6 = 0.
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Models with different Slopes and different Intercepts

df <- cbind(P140,res = rstandard(mod3))
plot (x=df$TEST, y-df$res,

ylab="Residuals", xlab="Preemployment Test Score")
points (Af$TEST [Af$RACE == T], df$res[df$RACE == T],pch=19)
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Models with different Slopes and different Intercepts

m The framework using the models as FM a

for comparison. Interpret the F-Test.
Can you conclude that the
[SSE(RM) — SSE([ relationship is different for the two
m groups, so that two different
equations (intercept + slope) are
required?

(SSE_RM <- sum(residuals(modi)"~2))

## [1] 45.57

(SSE_FM <- sum(residuals(mod3)~2))

## [1] 31.66

(F_stat <- ((SSE_RM - SSE_FM)/2)/(SSE_FM/16))

## [1] 3.516

pf (F_stat, 2 16, FALSE)

## [1] 0.05424 34



Models with same Slope and different Intercepts

m Assuming we have a reason to believe that only the intercepts for the two
groups are different can be achieved using the indicator variable (and
omitting the interaction term).

Model 1 (Pooled): Yij = Po + BiXij + €
Model 4 (Indicator only): Vi = Bo + Baxij + yzjj + (zi—KG) + €
m In the case where z; = 1 (which indicates the non-minority group) the

coefficient  can be added to the intercept 3, to obtain the effective
intercept for that respecitve group.

m The resulting models represent two parallel lines (same slopes) with
intercepts By and g + 7.
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Models with same Slope and different Intercepts

mod4 <- 1m(JPERF ~ 1 + TEST + RACE, data=P140)

m Significance can be tested using the F-Test. As the FM and RM differ by one
parameter, results are eqauivalent to the t-Test.

Model 1 Model 2 Model 2 Model 3 Model 4

Pooled Minority White Interaction Indicator
(Intercept) 1.03 0.10 2.01 2.01 0.61
(0.87) (1.04) (1.13) (1.05) (0.89)
TEST 2.36*** 3.31%** 1.31 1.31 2.30%**
(0.54) (0.62) (0.72) (0.67) (0.52)
RACE —1.91 1.03
(1.54) (0.69)
TEST:RACE 2.00
(0.95)
R? 0.52 0.78 0.29 0.66 0.57
Adj. R? 0.49 0.75 0.20 0.60 0.52
Num. obs. 20 10 10 20 20

***p < 0.001; **p < 0.01; *p < 0.05

Table 6
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Models with different Slopes and same Intercept

m Finally we can hypothesize that the two groups have the same intercept /3,
but different slopes, which can be done by including only the interaction.

Model 1 (Pooled): yii = Bo + BaXij + €5

Model 5 (Interaction only): Yii = Bo + B + yzi+ 6(zi - Xi) + €

mod5 <- 1m(JPERF ~ 1 + TEST + RACE:TEST, data=P140)

m Inference for the d can be carrioud out using the F-Test or the t-Test. The FM
and RM again only differ by one parameter.
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Systems of Regeression Equations

m The final results for all discussed cases for the preemployment test data look

like follows.
Model 1 Model 2 Model 2 Model 3 Model 4 Model 5
Pooled Minority White Full Interaction Indicator Interaction
(Intercept) 1.03 0.10 2.01 2.01 0.61 1.12
(0.87) (1.04) (1.13) (1.05) (0.89) (0.78)
TEST 2.36™** 3.31%** 1.31 1.31 2.30%** 1.83**
(0.54) (0.62) (0.72) (0.67) (0.52) (0.54)
RACE —1.91 1.03
(1.54) (0.69)
TEST:RACE 2.00 0.92*
(0.95) (0.40)
R 0.52 0.78 0.29 0.66 0.57 0.63
Adj. R? 0.49 0.75 0.20 0.60 0.52 0.59
Num. obs. 20 10 10 20 20 20

***p < 0.001; **p < 0.01; *p < 0.05

Table 7
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Time Series Data

m Another interesting field of study is temporal structure in the data, which
could fill a whole course by itself. Therefore we only briefly look at two ideas.

Calendar Effects, e.g. Seasonality

m Can be modeled by including time as regressor, e.g. in the form of (mulitple)
indicators for e.g. Week/Month/Quarter/Year

m The number of indicator variables is m — 1 where m is the frequency of the
time effects (e.g. m = 4 for Quarters).

Stability of Parameters over Time
m By combining inidcator and interaction terms one can model intertemporal
and interspatial relationships. Insignifcance of the interactions with all

indicators then provices evidence stability over time.
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