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Introduction

Data do not always come in suitable form so that they can be analysed right
away and often need to be transformed before carrying out an analysis.
Transformations are necessary because the original variables of the model
using these variables, violates one or more of the standard regression
assumptions.
Transformations are usually applied to accomplish objectives such as to
ensure linearity, to achieve normality or to stabilize the variance.
It is common practice to to fit a linear regression model to the transformed
rather than the original variables.
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Linearity and Non-Linearity

As mentioned before we consider a model to be linear when the parameters
in the model enter in a linear fashion, even if the predictors occur
nonlinearily. All following models are linear.

Y = β0 + β1X + ϵ

Y = β0 + β1X + β2X2 + ϵ

Y = β0 + β1log(X) + ϵ

Y = β0 + β1
√
X + ϵ

The following model is non-linear as the regression parameter β1 does not
enter linearily.

Y = β1 + eβ1X + ϵ
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Transformations

Transformations may be necessary for a variety of reasons:

1 Theoretical considerations may specify that the relationship between two
variables is nonlinear.

2 The response variable Y may have a probability distribution whose variance
is related to the mean. When relating Y and X, then the variance of Y will
change with X. The distribution of Y is often non-normal. This invalidates the
standard tests of significance. The unqueal variance also leads to inefficient
(not smallest variance) estimates of the error term. Transformations that
stabilize variances are coincidentically also good normalizing transforms.

3 When there is no reason to suspect that a transformation is required, the
evicence to apply a transformation comes from inspecting the residuals from
a fit with the original variables.
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Transformations to achieve Linearity

One of the standard assumptions in regression analysis is the linearity of the
formed model.
When analyzing the scatter plot of Y against Xj data may appear to be
nonlinear.
The following transformations can be chosen based on the pattern of the
Y-X-Scatterplot to linearize the realtionship so that linear regression can be
applied.
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Transformations to achieve Linearity
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Transformations to achieve Linearity

Function Transformation Linear Form Type

Y = αXβ Y′ = log(Y), X′ = log(X) Y′ = log(α) + βX′ Type 1
y = αeβX Y′ = ln(Y) Y′ = ln(α + βX) Type 2
Y = α + βlog(X) X′ = log(X) Y = α + βX′ Type 3
Y = X

αX−β Y′ = 1
Y , X′ = 1

X Y′ = α − βX′ Type 4 a
Y = eα+βX

1+eα+βX Y′ = ln( Y
1−Y ) Y′ = α + βX Type 4 b

Not every curvature is linearizable! Depending on the observed
patterns it may be necessary to choose a different estimation
method, which we do not discuss here.
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Example: Bacteria Data

P168

## t N_t
## 1 1 355
## 2 2 211
## 3 3 197
## 4 4 166
## 5 5 142
## 6 6 106
## 7 7 104
## 8 8 60
## 9 9 56
## 10 10 38
## 11 11 36
## 12 12 32
## 13 13 21
## 14 14 19
## 15 15 15
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Your turn
Nt Number of surviving bacteria
after X-ray exposure of time t.
t Exposure time to X-rays in
minutes.



Example: Bacteria Data

The bacteria data was collected to test the “Single-Hit” Hypothesis. The
underlying theory (not discussed) states that there is a single vital center in
each bacteria that nets to be hit by a X-Ray to inactivate the organism.
If the theory is applicable the number of surviving bacteria ηt should relate
to the exposure time to X-ray t by

ηt = η0eβ1·t

The parameters are η0 and β1 relate to pyhsical quantities. η0 is the number
of bacteria at the start of tehe experiment and β1 is the desctruction (decay)
rate.
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Example: Bacteria Data

The relation between ηt and t cannot be estimated using OLS directly.
Therefore we need to apply a transformation by taking logarithms of both
sides

ln(ηt) = ln(η0eβ1·t) = ln(η0) + β1t = β0 + β1t

The presented equation is deterministic as it contains no error. Introducing
the error in the linearized eqaution in an additive way, the (transfromed)
error must occur in multiplicative form in the original equation (ϵt = ln(ϵ′

t)).

ln(ηt) = β0 + β1t + ϵt → ηt = η0eβ1·tϵ′
t
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Example: Bacteria Data

mod1 <- lm(N_t ~ 1 + t, data = P168) # Inadequate Model
mod2 <- lm(log(N_t) ~ 1 + t, data = P168) # Adequate Model

texreg::texreg(list(mod1,mod2), custom.model.names = c("Nt","log(Nt)"))

Nt log(Nt)
(Intercept) 259.58∗∗∗ 5.97∗∗∗

(22.73) (0.06)
t −19.46∗∗∗ −0.22∗∗∗

(2.50) (0.01)
R2 0.82 0.99
Adj. R2 0.81 0.99
Num. obs. 15 15
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 3: Statistical models
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Example: Bacteria Data

The estimate of the intercept in the equation is the best linear unbiased
estimate of ln(η0). Given we are interested in β̂0, the backtransformation eβ̂0

is not an unbiased estimate of η0!

exp(coef(mod2)[1]) # Not an unbiased estimate!

## (Intercept)
## 392.7

To obtain a (nearly) unbiased estimate the correction
η̂0 = exp(β̂0 − 1

2Var(β̂0)) can be applied.

exp(coef(mod2)[1] - 0.5 * coef(summary(mod2))[,"Std. Error"][1]ˆ2)

## (Intercept)
## 392
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Example: Bacteria Data
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Transformations to stabilize Variance

Heteroscedasticity

Constancy of error variance is one of the assumptions of least squares theory. If
the error variance is not constant the error is said to be heteroscedastic. It is
detected by graphs of the residuals against all predictors, which usually show a
funnel (increase or decrease with X).

17



Transformations to stabilize Variance

Heteroscedasticity
Constancy of error variance is one of the assumptions of least squares theory. If
the error variance is not constant the error is said to be heteroscedastic. It is
detected by graphs of the residuals against all predictors, which usually show a
funnel (increase or decrease with X).
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Heteroscedasticity
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Heteroscedasticity

Heteroscedasticity causes parameter estimates which lack precision in a
theoretical sense. The estimated standard errors of the coefficients are
often understated, giving a false sense of accuracy.
The assumed normal distribution has the property that its mean and
variance independent in the sense that one is not a function of the other.
This is not the case for e.g. the Binomial or Poisson distributions.
Heteroscedasticity can easily be removed by means of suitable
transformations, given that the probability distribution of the response is
known.
The discussed transformations stabilize the variance and make the
distribution of the transformed variable closer to the normal distribution.
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Example: Detection of heteroscedastic Errors
P176

## X Y
## 1 294 30
## 2 247 32
## 3 267 37
## 4 358 44
## 5 423 47
## 6 311 49
## 7 450 56
## 8 534 62
## 9 438 68
## 10 697 78
## 11 688 80
## 12 630 84
## 13 709 88
## 14 627 97
## 15 615 100
## 16 999 109
## 17 1022 114
## 18 1015 117
## 19 700 106
## 20 850 128
## 21 980 130
## 22 1025 160
## 23 1021 97
## 24 1200 180
## 25 1250 112
## 26 1500 210
## 27 1650 135

20

Your turn
X Number of supervised workers.
Y Number of Supvervisors.



Example: Detection of heteroscedastic Errors

mod <- lm(Y ~ 1 + X, data=P176)
texreg::texreg(mod)

Model 1
(Intercept) 14.45

(9.56)
X 0.11∗∗∗

(0.01)
R2 0.78
Adj. R2 0.77
Num. obs. 27
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 4: Statistical models
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Example: Detection of heteroscedastic Errors
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Removal of heteroscedastic Errors

In many applications unequal error variance is observed in a for where the
variance increses when the predictor variable increases.
Based on this empirical observation, we can hypothesize that the standard
deviation of the residuals is proportional to X.

yi = β0 + β1xi + ϵi

with Var(ϵi) = k2x2i and k > 0
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Removal of heteroscedastic Errors

Given a proportional relationship between the standard deviation and the
predictor indicates that it is beneficial to divide both sides of the regression
equation by xi:

yi
xi

=
β0

xi
+ β1 +

ϵi
xi

Defining a new set of variables and coefficients

Y′ =
Y
X

, X′ =
1
X

, β′
0 = β1, ϵ′ =

ϵ

X
yields the new following form:

y′
i = β′

0 + β′
1x

′
i + ϵ′

i
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Removal of heteroscedastic Errors

For the transformde model the Var(ϵ′
i ) = k2. If our assumption about the

error term fits the model properly, we must work with the transformed
variables Y/X (response) and 1/X (predictor).

Transformed:
Ŷ
X
= β̂′

0 +
β̂′
1

X
Original: Ŷ = β̂′

1 + β̂′
0X

25



Removal of heteroscedastic Errors
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Removal of heteroscedastic Errors

mod2 <- lm(I(Y/X) ~ 1 + I(1/X), data=P176)
summary(mod2)

##
## Call:
## lm(formula = I(Y/X) ~ 1 + I(1/X), data = P176)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0415 -0.0138 -0.0050 0.0247 0.0354
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.121 0.009 13.45 6e-13 ***
## I(1/X) 3.803 4.570 0.83 0.41
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.0227 on 25 degrees of freedom
## Multiple R-squared: 0.027, Adjusted R-squared: -0.012
## F-statistic: 0.693 on 1 and 25 DF, p-value: 0.413
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Note
The results here are expressed in
terms of the transfromed
variables () so measures except
the coefficient estimates (their
SD, t-values, ...) like R2 cannot
simply be interpreted.



Weighted Least Squares

Linear regression models with heteroscedastic erros can also be fitted by a
method called teh weighted least squares (WLS), ehtere parameter
estimates are obtained by minimizing weighted sum of squares of residuals.
The weights in that case are chosen to be inversely proportional to the
variance of the errors. In the discussed example, this means

WLS:
∑ 1

x2i
(yi − β0 − β1xi)2 OLS:

∑
(yi − β0 − β1xi)2
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Weighted Least Squares

mod.wls <- lm(Y ~ 1 + X, weights = 1/Xˆ2, data=P176)
summary(mod.wls)

##
## Call:
## lm(formula = Y ~ 1 + X, data = P176, weights = 1/X^2)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -0.0415 -0.0138 -0.0050 0.0247 0.0354
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.803 4.570 0.83 0.41
## X 0.121 0.009 13.45 6e-13 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.0227 on 25 degrees of freedom
## Multiple R-squared: 0.879, Adjusted R-squared: 0.874
## F-statistic: 181 on 1 and 25 DF, p-value: 6.04e-13

29

Note
Performing OLS on the
transformed variables Y/X and
1/X is equivalent to the shown
WLS Model.



Logarithmic Transformation

The most widely used transformation is the logarithmic transformation,
where ln(Y) is used as response instead of Y.

ln(yi) = β0 + β1xi + ϵi

This transformation is particularly useful for variables, where the standard
deviation is large compared to the mean.
Working on a log scale has the effect of dampening variability and reducing
asymmetry and also reduces heteroskedasticity.
Results obtained on a log scale are sometimes harder to interpret than on
the original scale and original variables.
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Logarithmic Transformation

mod1 <- lm(log(Y) ~ 1 + X, data=P176)
texreg::texreg(mod1, digits = 8,

custom.model.names = "log(Y)")

log(Y)
(Intercept) 3.51502316∗∗∗

(0.11106702)
X 0.00120408∗∗∗

(0.00013155)
R2 0.77016652
Adj. R2 0.76097318
Num. obs. 27
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 5: Statistical models
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Logarithmic Transformation

plot(P176$X, rstandard(mod1), xlab="X")
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Your turn
What could you do to improve
the residuals and get rid of the
non-linearity that is clearly
visible?



Logarithmic Transformation

mod1 <- lm(log(Y) ~ 1 + X, data=P176)
mod2 <- lm(log(Y) ~ 1 + X + I(Xˆ2), data=P176)
texreg::texreg(list(mod1,mod2), digits = 8,

custom.model.names = c("log(Y)","log(Y)"))

log(Y) log(Y)
(Intercept) 3.51502316∗∗∗ 2.85160036∗∗∗

(0.11106702) (0.15664013)
X 0.00120408∗∗∗ 0.00311267∗∗∗

(0.00013155) (0.00039893)
X2 −0.00000110∗∗∗

(0.00000022)
R2 0.77016652 0.88569267
Adj. R2 0.76097318 0.87616706
Num. obs. 27 27
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 6: Statistical models
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Logarithmic Transformation
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Logarithmic Transformation

Residuals for the model ln(yi) = β0 + β1xi + β2x2i + ϵi appear satisfactory.
There is no appreance of heteroscedasticity or non-linearity in the residuals.
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Applying different transformation may yield mulitple acceptable candidates,
which all may be used as final models.
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Power Transformation

The common transformations ln(Y), 1/Y and
√
Y can be seen as special cases

of the so called power transformation.

Yλ

It is also common to use the Box-Cox-Transformation (Yλ − 1)/λ which
approaches log(Y) as λ approaches 0.
Reciprocal (λ = −1), square root (λ = 0.5) and logarithmic transformation
(λ = 0) can all be modeled within this framework.
Choosing transformations based on empirical evidence to achieve normality
and/or to stabilize the error variance may require experimentation with
different power transforms.
Typical values for λ are between -2 and 2 and should be sufficient for most
practical use cases.
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Example: Brain Data
P184

## BrainWeight BodyWeight
## Mountain beaver 8.1 1.350
## Cow 423.0 465.000
## Graywolf 119.5 36.330
## Goat 115.0 27.660
## Guineapig 5.5 1.040
## Diplodocus 50.0 11700.000
## Asian elephant 4603.0 2547.000
## Donkey 419.0 187.100
## Horse 655.0 521.000
## Potar monkey 115.0 10.000
## Cat 25.6 3.300
## Giraffe 680.0 529.000
## Gorilla 406.0 207.000
## Human 1320.0 62.000
## African elephant 5712.0 6654.000
## Triceratops 70.0 9400.000
## Rhesus monkey 179.0 6.800
## Kangaroo 56.0 35.000
## Hamster 1.0 0.120
## Mouse 0.4 0.023
## Rabbit 12.1 2.500
## Sheep 175.0 55.500
## Jaguar 157.0 100.000
## Chimpanzee 440.0 52.160
## Brachiosaurus 154.5 87000.000
## Rat 1.9 0.280
## Mole 3.0 0.122
## Pig 180.0 192.000
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Your turn
BrainWeight Brain Weight of the
animal in grams.
BodyWeight Body Weight of the
respective animal in kilograms.



Example: Brain Data
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Power Transformation
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Power Transformation

The logarithmic transformation (λ = 0) is the most appropriate one for the
data.
In the case of λ = 0 the relationship looks linear, but three data points
(dinosaurs) deviate from the other observations.
In the example the power tranformation has been applied to X and Y
simultaneously and with the same value of λ. In practice it may be more
appropriate to raise each value to a different power, choose tha values
independelty or transform only a single variable.
Heteroscedasticity and non-linearity can be diagnsoed by checking the
residuals of the model. The final model (with applied transformations)
should not show evidence of heteroscedasticity or deterministic patterns.
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Model

data <- P184[-c(6,16,25), ]
mod1 <- lm(BrainWeight ~ 1 + BodyWeight, data = data)
mod2 <- lm(BrainWeight ~ -1 + BodyWeight, data = data)
texreg::texreg(list(mod1, mod2), digits = 4,

custom.model.names = c("BrainWeight","BrainWeight"))

BrainWeight BrainWeight
(Intercept) 191.2226

(110.0878)
BodyWeight 0.9432∗∗∗ 0.9865∗∗∗

(0.0766) (0.0754)
R2 0.8683 0.8771
Adj. R2 0.8626 0.8719
Num. obs. 25 25
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 7: Statistical models

41


	Organizational Information
	Transformations

