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Introduction

Estimation using weighted least squares is equivalent to perfroming OLS on
the transformed variables.
We discussWLS as a method of dealing with heteroscedasticity of errors as
well as an estimation method in its own (WLS performs better for e.g. fitiing
logistic models or dose-response-curves).
WLS allows relaxing the assumption of equal error variance, so that the ϵi’s
are assumed to be independently distributed with zero mean and
Var(ϵi) = σ2

i instead of Var(ϵi) = σ2.
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Weighted Least Squares

Obtaining theWLS estimates of β0, β1, . . . , βp requires minimizing

n∑
i=1

ωi(yi − β0 − β1xi1 − . . . − βpxip)2

Usually the ωi are weights that are inversely proportional to the variance of
the residuals, like ωi = 1/σ2

i .
Any observation with a small weight will be severly discounted by WLS in
determining the estimates of β0, β1, . . . , βp.
In the extreme case where ωi = 0 the i-th observation will be excluded from
the estimation process.
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Two Step Estimation Approach

The approach we take here when estimating WLS is a two step estimation
approach, which assumes that the weights ω are unknown.

1) We collect knowledge about the process that generates the data (DGP) and
evidence from an OLS fit to detect the heteroscedastic problem.

2) The OLS fit itself or the gathered evidence serves as basis for determining the
weights ω. Those weights are used in theWLS fit.
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Types of heteroscedastic models

1) Variance proportional to a regressor
2) Heterogeneity of variance as consequence of data collection
3) Unknown source of heteroscedasticity and empirical identification of the

structure
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Heteroscedastic Models

mod.ols <- lm(Y ~ 1 + X, data=P176)
plot(P176$X,rstandard(mod.ols), xlab = "X")
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Data Description
X Number of supervised workers.
Y Number of Supvervisors.



Type 1: Heteroscedastic Models

mod.wls <- lm(Y ~ 1 + X, weights = 1/Xˆ2, data=P176)
plot(P176$X,rstandard(mod.wls), xlab = "X")

200 400 600 800 1000 1200 1400 1600

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

X

rs
ta

nd
ar

d(
m

od
.w

ls
)

10



Type 1: Heteroscedastic Models

In the given example we argued that the variance of ϵi is proportional to the
size of the establishment measured by x2i , so that Var(ϵi) = σ2

i = k2x2i , with
k > 0.

The same approach also works in multiple regression, given that the
variance of the residuals is only affected by one of the predictors (e.g. X2),
the estimtes of the parameters are determined by minimizing:

n∑
i=1

1
x2i2

(yi − β0 − β1xi1 − . . . − βpxip)2

All modern statistical packages provide WLS procedures. The transformation approach to
WLS discussed int he previous chapter is to foster your understanding and (usually) not
used when estimating models.
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Type 2: Heteroscedastic Models

Another type of heterescedasticity often occurs in surveys, where the
observations are averages of individual sampling units taken over distinct
groups or clusters.
Due to the properties of the mean (which is a random variable) the variance
is proportional to the square root of the sample size, on which the average is
based, that is σȳi = σ/

√
ni. Here σ is the standard deviation of Y in the

population.
This leads to ωi = 1/σ2

i as weights for the WLS approach.
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Type 2: Heteroscedastic Models

The precision of measurement is the justification for weightig the
observations in this fashion. Averages that are based on few observations
(high variance) should play a smaller role in estimating the overall effect.

Estimation is then carried out by minimizing:

S =
∑n

i=1 ωi(yi − β0 − β1xi1 − . . . − βpxip)2

=
∑n

i=1
1

σ2
i
(yi − β0 − β1xi1 − . . . − βpxip)2

As σ2
i = σ2/ni:

=
∑n

i=1 ni(yi − β0 − β1xi1 − . . . − βpxip)2

Remember
The value xij is an average calculated based on nj observations!
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Type 3: Heteroscedastic Models

We deal with heteroscedasticity by transformation of variables, where the
transformations are constructed from information in the raw data.
In the following only the indication for heteroscedasticity is drawn from the
raw data and the strucutre is determined empirically. Therefore the
estimation requires two stages.
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Type 3: Heteroscedastic Models
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Type 3: Heteroscedastic Models

The regression model for the shown sample data could be stated as follows,
where Var(ϵij) = σ2

j .

yij = β0 + β1xj + ϵij with i = 1, 2, . . . , nj and j = 1, 2, 3, 4, 5

The observed residual for the i-th observation in the j-th group is
eij = yij − ŷij.
Adding and subtracting the mean of the response ȳj reveals that the residual
has two parts which occure beacuse of pure error and lack of fit respectively.

eij = (yij − ȳj)︸ ︷︷ ︸
pure error

+ (ȳj − ŷij)︸ ︷︷ ︸
lack of fit
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Type 3: Heteroscedastic Models

The weights for fitting usingWLS can be determined based on the pure error
so that they are inversely proportional to the variance in the group
ωij = 1/s2j .

s2j =
nj∑
i=1

(yij − ȳj)2/(nj − 1)

The question what constitutes a group can only be answered in a specific
setting and a plausible way to explore heteroscedasticity is by clustering
observations according to prior, natural and meaninful associations (that are
often already available as variable or can also be constructed with modest
effort).
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Example: Education Expenditure
P198

## Y X1 X2 X3 Region
## ME 235 3944 325 508 1
## NH 231 4578 323 564 1
## VT 270 4011 328 322 1
## MA 261 5233 305 846 1
## RI 300 4780 303 871 1
## CT 317 5889 307 774 1
## NY 387 5663 301 856 1
## NJ 285 5759 310 889 1
## PA 300 4894 300 715 1
## OH 221 5012 324 753 2
## IN 264 4908 329 649 2
## IL 308 5753 320 830 2
## MI 379 5439 337 738 2
## WI 342 4634 328 659 2
## MN 378 4921 330 664 2
## IA 232 4869 318 572 2
## MO 231 4672 309 701 2
## ND 246 4782 333 443 2
## SD 230 4296 330 446 2
## NB 268 4827 318 615 2
## KS 337 5057 304 661 2
## DE 344 5540 328 722 3
## MD 330 5331 323 766 3
## VA 261 4715 317 631 3
## WV 214 3828 310 390 3
## NC 245 4120 321 450 3
## SC 233 3817 342 476 3
## GA 250 4243 339 603 3
## FL 243 4647 287 805 3
## KY 216 3967 325 523 3
## TN 212 3946 315 588 3
## AL 208 3724 332 584 3
## MS 215 3448 358 445 3
## AR 221 3680 320 500 3
## LA 244 3825 355 661 3
## OK 234 4189 306 680 3
## TX 269 4336 335 797 3
## MT 302 4418 335 534 4
## ID 268 4323 344 541 4
## WY 323 4813 331 605 4
## CO 304 5046 324 785 4
## NM 317 3764 366 698 4
## AZ 332 4504 340 796 4
## UT 315 4005 378 804 4
## NV 291 5560 330 809 4
## WA 312 4989 313 726 4
## OR 316 4697 305 671 4
## CA 332 5438 307 909 4
## AK 546 5613 386 484 4
## HI 311 5309 333 831 4

18

Data Description
Y Per capita expenditure on
education projected for 1975.
X1 Per capita income in 1973.
X2 Number of residents per
thousand unter 18 years of age in
1974.
X3 Number of residents per
thousand living in urban areas in
1970.
Region Geographic Region: (1)
Northeast, (2) North Central, (3)
South and (4) West.



Example: Education Expenditure

The objective is to get the best representation of the relationship between
expenditure on education (Y) and the other variables for all 50 states in the
dataset.
The data are grouped in a natural way, by geographic region.
Our assumption is that, qlthough the relationship is structurally the same for
each region, the coefficients and residual variances may differ from region to
region.
The different variances constitute a case of heteroscedasticity that can be
treated directly in the analysis.
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Example: Education Expenditure

Y = β0 + β1X1 + β2X2 + β3X3 + ϵ

The model above is the model for the estimation. It should be noted that the
data could be analyzed using indicator variables fo look for effects
association with the regions.
However, our objective here is to develop one relationship that can serve as
the best representation for all regions and all states.
The goal is accomplished by taking regional differences into account through
theWLS estimation process.
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Example: Education Expenditure

We assume that there is a unique residual variance associated with each of
the four regions. The variances are denoted as (c1σ)2, (c2σ)2, (c3σ)2 and
(c4σ)2, where σ is the common part and the cj’s are unique to the regions.
The regression coefficients should be determined by minimizing

Sω = S1 + S2 + S3 + S4

The individual sum of squares for each region j = 1, 2, 3, 4 is given below:

Sj =
nj∑
i=1

1
c2j

(yi − β0 − β1xi1 − β2xi2 − β3xi3)2
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Example: Education Expenditure

The factors 1/c2j are the weights that determine how much influence each
observation has in estimating the regression coefficients. The weighting scheme
can be justified in two ways:

1) Arguing that observations that are most erratic (large error variance) should
have little influence in determinin gthe coefficients.

2) TheWLS approach allows transforming the data so that the residual
variance is constant. This can be achieved by dividing Y, X1, X2 and X3 by the
appropriate cj and yields an error term, that is (in concept) also divided by cj.
The resulting residuals have common variance and the desired least squares
properties.
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Example: Education Expenditure

The values of the cj’s are unknown and must be estimated in the same sense
that σ2 and the β’s must be estimated.
Basis for the estimation are the residuals from an OLS fit to the raw data,
that are grouped togehter by region.

ĉ2j =
σ̂2
j

1
n

∑n
i=1 e

2
i

Before estimating the cj’s, we check the residuals for obvious misspecification of
the model.
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Example: Education Expenditure

mod <- lm(Y ~ 1 + X1 + X2 + X3, data=P198)
summary(mod)

##
## Call:
## lm(formula = Y ~ 1 + X1 + X2 + X3, data = P198)
##
## Residuals:
## Min 1Q Median 3Q Max
## -84.88 -26.88 -3.83 22.25 99.24
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.57e+02 1.23e+02 -4.52 4.3e-05 ***
## X1 7.24e-02 1.16e-02 6.24 1.3e-07 ***
## X2 1.55e+00 3.15e-01 4.93 1.1e-05 ***
## X3 -4.27e-03 5.14e-02 -0.08 0.93
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 40.5 on 46 degrees of freedom
## Multiple R-squared: 0.591, Adjusted R-squared: 0.565
## F-statistic: 22.2 on 3 and 46 DF, p-value: 4.94e-09
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Example: Education Expenditure

par(mfrow=c(1,3))
plot(fitted(mod), rstandard(mod), main="Residuals vs. fitted Values")
plot(P198$Region, rstandard(mod), main="Residuals grouped by Region")
plot(hatvalues(mod), main="Leverage Values")
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Example: Education Expenditure

par(mfrow=c(1,3))
plot(P198$X1, rstandard(mod), main="Residuals vs. Predictor X1")
plot(P198$X2, rstandard(mod), main="Residuals vs. Predictor X2")
plot(P198$X3, rstandard(mod), main="Residuals vs. Predictor X3")
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Example: Education Expenditure

olsrr::ols_plot_cooksd_chart(mod)
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Example: Education Expenditure

olsrr::ols_plot_dffits(mod)
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Example: Education Expenditure

Observation 44 (UT = Utah) and Observation 49 (AK = Alaska) are
high-leverage points.

head(sort(hatvalues(mod), decreasing = T))

## AK UT NM VT WV FL
## 0.4419 0.2941 0.1829 0.1400 0.1334 0.1329

Only AK has high leverage and is influential (see DFITS and Cooks Distancs
plots). UT is only a high-leverage point without being influential.

The data is from 1975, Alaska has a very small population and an oil revenue
boom. We judge that the respective education budget is not strictly
comparable to the other states due to the unique situation. Therefore we
exclude Alaksa from the analysis.

d <- P198[-49,] # Remove Alaska (AK)
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Example: Education Expenditure

After removing the outlier from the data and refitting an OLSmodel, the
residuals can be used to estimate possible weights for theWLS estiation cj.

d <- P198[-49,] # Remove Outlier
mod.ols <- lm(Y ~ 1 + X1 + X2 + X3, data=d)

res <- split(residuals(mod.ols), d$Region)
sigma_sq <- sapply(res, function(e){sum(eˆ2)/(length(e)-1)})
c_sq <- sigma_sq/(1/nrow(d)*sum(residuals(mod.ols)ˆ2))
w <- 1/c_sq
knitr::kable(cbind(Region=1:4,n=sapply(res,length),sigma_sq, c=sqrt(c_sq), w),

digits = 4, booktabs=T)

Region n sigma_sq c w

1 9 1632.5 1.1774 0.7213
2 12 2658.5 1.5026 0.4429
3 16 266.1 0.4753 4.4258
4 12 1036.8 0.9383 1.1357
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Example: Education Expenditure

Below the complete code for the analysis is shown (somewhat redundant
but hopefully useful for clarification).

mod <- lm(Y ~ 1 + X1 + X2 + X3, data=P198)

d <- P198[-49,] # Remove Outlier
mod.ols <- lm(Y ~ 1 + X1 + X2 + X3, data=d)

res <- split(residuals(mod.ols), d$Region)
sigma_sq <- sapply(res, function(e){sum(eˆ2)/(length(e)-1)})
d$sigma_sq <- rep(sigma_sq, times=sapply(res, length))

w <- 1/(sigma_sq/(1/nrow(d)*sum(residuals(mod.ols)ˆ2)))
d$w <- rep(w, times=sapply(res, length))
mod.wls <- lm(Y ~ 1 + X1 + X2 + X3, weights=w, data=d)
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Example: Education Expenditure

texreg::texreg(list(mod, mod.ols, mod.wls), digits=3,
custom.model.names = c("OLS + Outlier", "OLS","WLS"))

OLS + Outlier OLS WLS
(Intercept) −556.568∗∗∗ −277.577∗ −316.024∗∗∗

(123.195) (132.423) (77.419)
X1 0.072∗∗∗ 0.048∗∗∗ 0.062∗∗∗

(0.012) (0.012) (0.008)
X2 1.552∗∗∗ 0.887∗ 0.874∗∗∗

(0.315) (0.331) (0.198)
X3 −0.004 0.067 0.029

(0.051) (0.049) (0.034)
R2 0.591 0.497 0.760
Adj. R2 0.565 0.463 0.744
Num. obs. 50 49 49
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 3: Statistical models
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Example: Education Expenditure

R computes the R2 in a different way forWLSmodels and employs a
weighted mean instead of simply R2 = [Cor(Y, Ŷ)]2.

# Rˆ2 for OLS and WLS modelas we defined it
c(R2.ols=cor(d$Y, fitted(mod.ols))ˆ2, R2.wls = cor(d$Y, fitted(mod.wls))ˆ2)

## R2.ols R2.wls
## 0.4967 0.4861

Only the R2OLS is the same as in the output table.
For Details on how R calculates R2 in the case ofWLS have a look at the links
here, here and here.
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https://stats.stackexchange.com/questions/439590/how-does-r-compute-r-squared-for-weighted-least-squares
https://stats.stackexchange.com/questions/83826/is-a-weighted-r2-in-robust-linear-model-meaningful-for-goodness-of-fit-analys/375752#375752
https://www.tandfonline.com/doi/abs/10.1080/00031305.1988.10475573


Example: Education Expenditure
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Example: Education Expenditure
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Example: Education Expenditure

The spread of the residuals has evened out for theWLS solution, which
indicates that our treatment of heteroscedasticity was (at least partially)
succesfull.
The hypotheses for theWLS estimation are not exact since that estimation is
carrid out using estimated weights. The inherent uncertainty of the weights
is not reflected in the hypotheses tests.
The comparable R2 values show that R2OLS > R2WLS, which must be the case as
OLS provides a solution with minimum σ̂ (an thus maximum R2).
The analysis is far from perfect as only roughly 50% of the variation in Y can
be explained, so the search for additional variables and/or a better model
should continue.
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Heteroscedastic Models

Heteroscedasticity cannot only be treated byWLS estimation. In general
heteroscedastic patterns in the residuals often disappear when sufficient
indicator variables are introduced.
In addition there are methods that are called Sandwich Estimators which
adjust the standard errors of an OLS fit and produce heteroscedasticity
robust standard errors. Those estimators are frequently used in
econometrics, but not covered in this course.

37


	Organizational Information
	Weighted Least Squares

