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Evaluation

Bitte evaluieren Sie den Kurs!
http://evasys.fh-swf.de/evasys/online.php?pswd=K94FQ
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Introduction

One of the standard regression assumptions is that the error terms ϵi and ϵj
(of the i-th and j-th observation) are uncorrelated.
Correlation in the error terms suggests that there is additional information
in the data that has not been exploited in the model. When observations
have a natural sequential order, the correlation is referred to as
autocorrelation.
Adjacent residuals tend to be similar (in temporal and spatial dimensions).
Successive residuals in time series tend to be positively correlated.
If the observations of an omitted variable are correlated, the errors from
the estimated model will appear to be correlated.
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Autocorrelation

Consequences of Autocorrelation:

1) Least squares estimates of the regression coefficients are unbiased but not
efficient in the sense that they no longer have minimum variance.

2) The estimate of σ2 and the standard errors rof the regression coefficients
may be seriously understated, giving a spurious impression of accuracy.

3) The confidence intervals and tests of significance would no longer strictly
valid.
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Autocorrelation

We will cover two types of autocorrelation:

1 Autocorrelation due to omission of a variable. Once the missing variable his
uncovered, the autocorrelation problem is resolved.

2 Pure autocorrelation, that can be dealt with by applying transformations to
the data.

9



Example: Consumer Expenditure and Money Stock

P211

## Year Quarter Expenditure Stock
## 1 1952 1 214.6 159.3
## 2 1952 2 217.7 161.2
## 3 1952 3 219.6 162.8
## 4 1952 4 227.2 164.6
## 5 1953 1 230.9 165.9
## 6 1953 2 233.3 167.9
## 7 1953 3 234.1 168.3
## 8 1953 4 232.3 169.7
## 9 1954 1 233.7 170.5
## 10 1954 2 236.5 171.6
## 11 1954 3 238.7 173.9
## 12 1954 4 243.2 176.1
## 13 1955 1 249.4 178.0
## 14 1955 2 254.3 179.1
## 15 1955 3 260.9 180.2
## 16 1955 4 263.3 181.2
## 17 1956 1 265.6 181.6
## 18 1956 2 268.2 182.5
## 19 1956 3 270.4 183.3
## 20 1956 4 275.6 184.3
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Data Description
Expenditure Consumer
expenditure (bn dollar)
Stock Stock of money (bn dollar)
Year Calendrical year of
observation
Quarter Quarter of observation



Example: Consumer Expenditure and Money Stock

yt = β0 + β1xt + ϵt

The regression model above can be seen as a simplifiedmodel of the
quantity theory of money.
The coefficient β1 is called themultiplier and of interest for economists and
is an important measure in fiscal and monetary policy.
Since the observations are ordered in time, it is reasonable to expect that
autocorrelation may be present.
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Example: Consumer Expenditure and Money Stock

mod <- lm(Expenditure ~ 1 + Stock, data=P211)
summary(mod)

##
## Call:
## lm(formula = Expenditure ~ 1 + Stock, data = P211)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.18 -3.40 1.40 2.93 6.36
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -154.719 19.850 -7.79 3.5e-07 ***
## Stock 2.300 0.115 20.08 9.0e-14 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 3.98 on 18 degrees of freedom
## Multiple R-squared: 0.957, Adjusted R-squared: 0.955
## F-statistic: 403 on 1 and 18 DF, p-value: 8.99e-14
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The analysis were complete if the
basic regression assumptions were
valid (which requires checking the
residuals). If autocorrelation is
present the model needs to be
reestimated.



Autocorrelation Function

par(mfrow=c(1,2))
acf(P211$Expenditure, lag.max = 8)
acf(P211$Stock, lag.max = 8)
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Residuals

par(mfrow=c(1,2))
plot(rstandard(mod), type="b", main="Standardized Residuals")
abline(h=0, col="darkgrey", lty="dashed")
acf(rstandard(mod))
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The sequence run length of the sign
of the residuals suggests departure
from randomness.



Durbin-Watson Test

The Durbin-Watson statistic is the basis of a popular test of autocorrelation
in regression analysis. It is based on the assumption that successive errors
are correlated:

ϵt = ρϵt−1 + ωt with |ρ| < 1

Here ρ is the correlation coefficient between ϵt and ϵt−1, and ωt is normally
independenlty distribution with zero mean and constant variance.
Given that ρ is significant, the errors are said to have first-order
autoregressive strucutre or first-order autocorrelation.
Generally errors will have a more complex dependency structure and the
simple first-order dependency is taken as a simple approximation of the
actual error structure.
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Durbin-Watson Test

The Durbin-Watson statistic is defined as:

d =
∑n

t=2(et − et−1)2∑n
t=1 e

2
t

ei is the i-th OLS residual.
The tested hypotheses are H0 : ρ = 0 versus H1 : ρ > 0. Where ρ = 0 means
that the ϵi’s are uncorrelated.
Determining the distribution of d is not trivial, and for determinig the
p-values multiple procedures exist (which we do not discuss here).

16



Durbin-Watson Test

lmtest::dwtest(mod) # p-value based on linear combination of chi-square values

##
## Durbin-Watson test
##
## data: mod
## DW = 0.33, p-value = 2e-08
## alternative hypothesis: true autocorrelation is greater than 0

car::durbinWatsonTest(mod) # p-value based on bootstrapping

## lag Autocorrelation D-W Statistic p-value
## 1 0.7506 0.3282 0
## Alternative hypothesis: rho != 0
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Transformations for Handling Autocorrelation

ϵt = yt − β0 − β1xt
ϵt−1 = yt−1 − β0 − β1xt−1

Substituting in ϵt = ρϵt−1 + ωt yields:

yt − β0 − β1xt = ρ (yt−1 − β0 − β1xt−1) + ωt

Rearranging yields:

yt − ρyt−1 = β0(1 − ρ) + β1(xt − ρxt−1) + ωt

y∗
t = β∗

0 + β∗
1 x∗

t + ωt
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Transformations for Handling Autocorrelation

Since the ωt’s are uncorrelated, the transfromed model represents a linear
model with uncorrelated errors.
This suggests to estimate OLS on the transformed variabels y∗

t and x∗
t . The

relation between the parameters in the transformed and original model are:

β̂0 =
β̂∗
0

1 − ρ̂
and β̂1 = β̂∗

1

The strength of the autocorrelation is unknown, so that ρ needs to be estimated!
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Transformations for Handling Autocorrelation

Summary of the Procedure (Cochrane and Orcutt)

1 Compute the OLS estimates of β0 and β1 by fitting yt = β0 + β1xt + ϵt to the
data.

2 Compute the residuals from the OLS model and estimate ρ using
ρ̂ =

∑n
t=2 etet−1/

∑n
t=1 e

2
t .

3 Refit a linear model y∗
t = β∗

0 + β∗
1 x∗

t + ωt using the transformed variables
y∗
t = yt − ρyt−1 and x∗

t = xt − ρxt−1.

4 Examine the residuals of the newly fitted model. If the new residuals
continue to show autocorrelation, repeat the entire procedure using the
current model as starting point.
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Cochrane-Orcutt Estimation (Manually)

# Functions
d <- function(e){sum((head(e,length(e)-1) - tail(e,length(e)-1))ˆ2) / sum(eˆ2)}
rho <- function(e){sum(head(e,length(e)-1) * tail(e,length(e)-1)) / sum(eˆ2)}

# Model 1 (OLS)
mod <- lm(Expenditure ~ 1 + Stock, data=P211)

# Model 2 (Cochrane Orcutt)
df <- P211
df$Expenditure_lag1 <- c(NA, head(df$Expenditure,nrow(df)-1))
df$Stock_lag1 <- c(NA, head(df$Stock,nrow(df)-1))
df$y_new <- df$Expenditure - rho(residuals(mod)) * df$Expenditure_lag1
df$x_new <- df$Stock - rho(residuals(mod)) * df$Stock_lag1
mod.co <- lm(y_new ~ 1 + x_new, data=df)

# Comparison: Both models in terms of the original Data
c(coef(mod), beta1_se=summary(mod)$coefficients[2,2])

## (Intercept) Stock beta1_se
## -154.7192 2.3004 0.1146

c(coef(mod.co)[1] / (1 - rho(residuals(mod))), coef(mod.co)[2],
beta1_se=summary(mod.co)$coefficients[2,2])

## (Intercept) x_new beta1_se
## -215.3110 2.6434 0.3069
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The β1 coefficient only changed
slightly, however, the standard error
increased by a factor of almost 3.



Cochrane-Orcutt Estimation (Manually)

par(mfrow=c(1,2))
plot(rstandard(mod.co), type="b", main="Standardized Residuals")
abline(h=0, col="darkgrey", lty="dashed")
acf(rstandard(mod.co))
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Iterative Cochrane-Orcutt-Style Estimation

A more direct approach is estimating values of ρ, β0 and β1 directly, instead
of the classical two-step Cochrane-Orcutt prodecure. This can be achived by
integrating ρ as parameter in the transformed model and simultaneously
minimizing the sum of squares.

S(β0, β1, ρ) =
n∑
t=2

[yt − ρyt−1 − β0(1 − ρ) − β1(xt − ρxt−1)]2

The standard error of β1 can then be calculated using
σ̂ = S(β̂0, β̂1, ρ̂)/(n − 2) (treating ρ̂ as known) like

s.e(β̂1) =
σ̂√∑

[xt − ρ̂xt−1 − x̄(1 − ρ̂)]2
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Iterative Cochrane-Orcutt-Style Estimation (R)

(mod.coit <- orcutt::cochrane.orcutt(mod))

## Cochrane-orcutt estimation for first order autocorrelation
##
## Call:
## lm(formula = Expenditure ~ 1 + Stock, data = P211)
##
## number of interaction: 13
## rho 0.8241
##
## Durbin-Watson statistic
## (original): 0.32821 , p-value: 2.303e-08
## (transformed): 1.60103 , p-value: 1.261e-01
##
## coefficients:
## (Intercept) Stock
## -235.488 2.753
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Autocorrelation and missing Variables

When an index plot of the residuals shows a pattern described previous
(e.g. positive or negative clusters), it is reasonable to suspect that this may
be due to the omission of variables that change over time.
Exploring additional regressors is better than reverting to an autoregressive
model, as it is less complex an potentially easier to understand. The
transformations that correct for pure autocorrelation may be viewed as an
action of last resort.
In general a high value of the Durbin-Watson statistic should be seen as an
indicator that a problem exists (missign variable and pure autocorrelation
are possible).
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Example: Housing Starts

P219

## H P D
## 1 0.09090 2.200 0.03635
## 2 0.08942 2.222 0.03345
## 3 0.09755 2.244 0.03870
## 4 0.09550 2.267 0.03745
## 5 0.09678 2.280 0.04063
## 6 0.10327 2.289 0.04237
## 7 0.10513 2.289 0.04715
## 8 0.10840 2.290 0.04883
## 9 0.10822 2.299 0.04836
## 10 0.10741 2.300 0.05160
## 11 0.10751 2.300 0.04879
## 12 0.11429 2.340 0.05523
## 13 0.11048 2.386 0.04770
## 14 0.11604 2.433 0.05282
## 15 0.11688 2.482 0.05473
## 16 0.12044 2.532 0.05531
## 17 0.12125 2.580 0.05898
## 18 0.12080 2.605 0.06267
## 19 0.12368 2.631 0.05462
## 20 0.12679 2.658 0.05672
## 21 0.12996 2.684 0.06674
## 22 0.13445 2.711 0.06451
## 23 0.13325 2.738 0.06313
## 24 0.13863 2.766 0.06573
## 25 0.13964 2.793 0.07229
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Data Description
H Housing Starts
P Population Size (millions)
D Availabilit for Mortgage Money
Index



Example: Housing Starts

The goal of the model is to better understand the relationship between
housing starts (indicator for privately owened ney houses on which
construction has been started) and population growth.
A starting point is the simple (and naive) model which relates housing starts
and population

Ht = β0 + β1Pt + ϵt
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Example: Housing Starts

mod1 <- lm(H ~ 1 + P, data=P219)
summary(mod1)

##
## Call:
## lm(formula = H ~ 1 + P, data = P219)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.008368 -0.002133 0.000525 0.002557 0.008075
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.06088 0.01042 -5.85 5.9e-06 ***
## P 0.07141 0.00423 16.87 1.9e-14 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.00408 on 23 degrees of freedom
## Multiple R-squared: 0.925, Adjusted R-squared: 0.922
## F-statistic: 285 on 1 and 23 DF, p-value: 1.91e-14
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Example: Housing Starts

plot(rstandard(mod1), main="Standardized Residuals")
abline(h=0, col="darkgrey", lty="dashed")
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car::durbinWatsonTest(mod1)

## lag Autocorrelation D-W Statistic p-value
## 1 0.6511 0.6208 0
## Alternative hypothesis: rho != 0
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Example: Housing Starts

The residual index plot and the Durbin-Watson-Test suggest autocorrelation.
The importance of additional variables for the relationship like,
unemployment rate, social trends in marriage and family formation,
goverment programs for housing and availability of construction and
mortgage funds cannot be neglected.

mod2 <- lm(H ~ 1 + P + D, data=P219)
car::durbinWatsonTest(mod2) # Adding Money Indicator removes autocorrelation!

## lag Autocorrelation D-W Statistic p-value
## 1 0.03957 1.852 0.448
## Alternative hypothesis: rho != 0
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Example: Housing Starts

mod3 <- lm(scale(H) ~ 1 + scale(P) + scale(D), data=P219)
texreg::texreg(list(mod1, mod2, mod3))

Model 1 Model 2 Model 3
(Intercept) −0.06∗∗∗ −0.01 0.00

(0.01) (0.01) (0.03)
P 0.07∗∗∗ 0.03∗∗∗

(0.00) (0.01)
D 0.76∗∗∗

(0.12)
scale(P) 0.47∗∗∗

(0.09)
scale(D) 0.54∗∗∗

(0.09)
R2 0.93 0.97 0.97
Adj. R2 0.92 0.97 0.97
Num. obs. 25 25 25
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 2: Statistical models
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The standardized model shows that
the mortgage index has a larger
effect (and thus is more important
for modeling the relationship). If D
increases by one standard deviation
H increases by 0.54 standard
deviations.



Limits of the Durbin-Watson Test

If the pattern of time dependence is other than first order, teh plot of
residuals will still be informative.
The Durbin-Watson statistic is, however, not designed to capture
higher-order time dependence and may not yield much valuable
information.
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Example: Ski Sales
P224

## Quarter Sales PDI Season
## 1 Q1/64 37.0 109 1
## 2 Q2/64 33.5 115 0
## 3 Q3/64 30.8 113 0
## 4 Q4/64 37.9 116 1
## 5 Q1/65 37.4 118 1
## 6 Q2/65 31.6 120 0
## 7 Q3/65 34.0 122 0
## 8 Q4/65 38.1 124 1
## 9 Q1/66 40.0 126 1
## 10 Q2/66 35.0 128 0
## 11 Q3/66 34.9 130 0
## 12 Q4/66 40.2 132 1
## 13 Q1/67 41.9 133 1
## 14 Q2/67 34.7 135 0
## 15 Q3/67 38.8 138 0
## 16 Q4/67 43.7 140 1
## 17 Q1/68 44.2 143 1
## 18 Q2/68 40.4 147 0
## 19 Q3/68 38.4 148 0
## 20 Q4/68 45.4 151 1
## 21 Q1/69 44.9 153 1
## 22 Q2/69 41.6 156 0
## 23 Q3/69 44.0 160 0
## 24 Q4/69 48.1 163 1
## 25 Q1/70 49.7 166 1
## 26 Q2/70 43.9 171 0
## 27 Q3/70 41.6 174 0
## 28 Q4/70 51.0 175 1
## 29 Q1/71 52.0 180 1
## 30 Q2/71 46.2 184 0
## 31 Q3/71 47.1 187 0
## 32 Q4/71 52.7 189 1
## 33 Q1/72 52.2 191 1
## 34 Q2/72 47.0 193 0
## 35 Q3/72 47.8 194 0
## 36 Q4/72 52.8 196 1
## 37 Q1/73 54.1 199 1
## 38 Q2/73 49.5 201 0
## 39 Q3/73 49.5 202 0
## 40 Q4/73 54.3 204 1
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Data Description
Quarter Quarter
Sales Sales
PDI Personal Disposable Income
Season Indicator of Season (1 for
Q1 and Q4, 0 otherwise)



Example: Ski Sales

mod1 <- lm(Sales ~ 1 + PDI, data=P224)
d(residuals(mod1)) # Durbin-Watson Statistic (own Function defined above)

## [1] 1.968
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Example: Ski Sales

mod2 <- lm(Sales ~ 1 + PDI + Season, data=P224)
texreg::texreg(list(mod1,mod2))

Model 1 Model 2
(Intercept) 12.39∗∗∗ 9.54∗∗∗

(2.54) (0.97)
PDI 0.20∗∗∗ 0.20∗∗∗

(0.02) (0.01)
Season 5.46∗∗∗

(0.36)
R2 0.80 0.97
Adj. R2 0.80 0.97
Num. obs. 40 40
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 3: Statistical models
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Example: Ski Sales

120 140 160 180 200

30
35

40
45

50
55

Pooled vs. different Intercept based on Season−Dummy

P224$PDI

P
22

4$
S

al
es

38



Example: Ski Sales

d(residuals(mod2)) # Durbin-Watson Statistic (own Function defined above)

## [1] 1.772
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Conclusion 1/2

The Durbin-Watson statistic is only sensitive to correlated errors, when the
correlation occurs between adjacent observations (first-order
autocorrelation).
There are other tests that may be used for detection of higher-order
autocorrelations (e.g. the Box-Pierce statistic), which we not cover here.
The plot of the residuals is capable of revealing correlation strucutres of any
order.
If autocorrelation is identified, the model needs to be adapted.
No autocorrelation is equivalent that the Durbin-Watson statistic is close to
2 (as d ∝ 2 · (1 − ρ)).

40



Conclusion 2/2

The data used here is mostly time series data instead of cross-sectional data
(all observations caputred at one point in time).
The problem of autocorrelation is not relevant for cross-sectional data as the
ordering of the observations is often arbitrarily. The correlation of adjacent
observations is thus an effect of the organization of the data.
Time series data often contains trens, which are are direct functions of time
a time variable t. So variables such as t or t2 could be included in the list of
predictor variables.
Additional variables such as lagged values of an regressor could be included
in a model so that e.g. yt = β0 + β1x1,t + β2x1,t−1β3x2,t.
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