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Introduction

The interpretation of the coefficients in a multiple regression equation
depend implicitly on the assumption that the predictors are not strongly
interrelated.
The common interpretation of regression coefficient is the change in the
response when the corresponding predictor is increased by one unit and all
other predictors are held constant.

This interpretation may not be valid if there are string linear relationships
among the regressors.
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Multicollinearity

When there is complete absence of linear relationships among the predictor
variables, they are said to be orthogonal.
In most applications the regressors are not orthogonal. However, in some
situations the predictor variables are so strongly interrelated that the
regression resuls ts are ambigious.
The condition of severe nonorthogonality is also referred to as the problem
ofmulticollineartiy.
This problem is not a specification error and thus cannot be detected in teh
residuals.
Multicollinearity is a condition of deficient data.
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Multicollinearity

We cover the following topics:

1 How does collinearity affect statistical inference and forecasting?
2 How can collinearity be detected?
3 What can be done to resolve the difficulties associated with collinearity

(next Session).

In an analysis these questions cannot be answered separately. When
multicollinearity all therre issues must be treated simultaneously.
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Example: Effects on Inference
P236

## ACHV FAM PEER SCHOOL
## 1 -0.43148 0.60814 0.03509 0.16607
## 2 0.79969 0.79369 0.47924 0.53356
## 3 -0.92467 -0.82630 -0.61951 -0.78635
## 4 -2.19081 -1.25310 -1.21675 -1.04076
## 5 -2.84818 0.17399 -0.18517 0.14229
## 6 -0.66233 0.20246 0.12764 0.27311
## 7 2.63674 0.24184 -0.09022 0.04967
## 8 2.35847 0.59421 0.21750 0.51876
## 9 -0.91305 -0.61561 -0.48971 -0.63219
## 10 0.59445 0.99391 0.62228 0.93368
## 11 1.21073 1.21721 1.00627 1.17381
## 12 1.87164 0.41436 0.71103 0.58978
## 13 -0.10178 0.83782 0.74281 0.72154
## 14 -2.87949 -0.75512 -0.64411 -0.56986
## 15 3.92590 -0.37407 -0.13787 -0.21770
## 16 4.35084 1.40353 1.14085 1.37147
## 17 1.57922 1.64194 1.29229 1.40269
## 18 3.95689 -0.31304 -0.07980 -0.21455
## 19 1.09275 1.28525 1.22441 1.20428
## 20 -0.62389 -1.51938 -1.27565 -1.36598
## 21 -0.63654 -0.38224 -0.05353 -0.35560
## 22 -2.02659 -0.19186 -0.42605 -0.53718
## 23 -1.46692 1.27649 0.81427 0.91967
## 24 3.15078 0.52310 0.30720 0.47231
## 25 -2.18938 -1.59810 -1.01572 -1.48315
## 26 1.91715 0.77914 0.87771 0.76496
## 27 -2.71428 -1.04745 -0.77536 -0.91397
## 28 -6.59852 -1.63217 -1.47709 -1.71347
## 29 0.65101 0.44328 0.60956 0.32833
## 30 -0.13772 -0.24972 0.07876 -0.17216
## 31 -2.43959 -0.33480 -0.39314 -0.37198
## 32 -3.27802 -0.20680 -0.13936 0.05626
## 33 -2.48058 -1.99375 -1.69587 -1.87838
## 34 1.88639 0.66475 0.79670 0.69865
## 35 5.06459 -0.27977 0.10817 -0.26450
## 36 1.96335 -0.43990 -0.66022 -0.58490
## 37 0.26274 -0.05334 -0.02396 -0.16795
## 38 -2.94593 -2.06699 -1.31832 -1.72082
## 39 -1.38628 -1.02560 -1.15858 -1.19420
## 40 -0.20797 0.45847 0.21555 0.31347
## 41 -1.07820 0.93979 0.63454 0.69907
## 42 -1.66386 -0.93238 -0.95216 -1.02725
## 43 0.58117 -0.35988 -0.30693 -0.46232
## 44 1.37447 -0.00518 0.35985 0.02485
## 45 -2.82687 -0.18892 -0.07959 0.01704
## 46 3.86363 0.87271 0.47644 0.57036
## 47 -2.64141 -2.06993 -1.82915 -2.16738
## 48 0.05387 0.32143 -0.25961 0.21632
## 49 0.50763 -1.42382 -0.77620 -1.07473
## 50 0.64347 -0.07852 -0.21347 -0.11750
## 51 2.49414 -0.14925 -0.03192 -0.36598
## 52 0.61955 0.52666 0.79149 0.71369
## 53 0.61745 -1.49102 -1.02073 -1.38103
## 54 -1.00743 -0.94757 -1.28991 -1.24799
## 55 -0.37469 0.24550 0.83794 0.59596
## 56 -2.52824 -0.41630 -0.60312 -0.34951
## 57 0.02372 1.38143 1.54542 1.59429
## 58 2.51077 1.03806 0.91637 0.97602
## 59 -4.22716 -0.88639 -0.47652 -0.77693
## 60 1.96847 1.08655 0.65700 0.89401
## 61 1.25668 -1.95142 -1.94199 -1.89645
## 62 -0.16848 2.83384 2.47398 2.79222
## 63 -0.34158 1.86753 1.55229 1.80057
## 64 -2.23973 -1.11172 -0.69732 -0.80197
## 65 3.62654 1.41958 1.11481 1.24558
## 66 0.97034 0.53940 0.16182 0.33477
## 67 3.16093 0.22491 0.74800 0.66182
## 68 -1.90801 1.48244 1.47079 1.54283
## 69 0.64598 2.05425 1.80369 1.90066
## 70 -1.75915 1.24058 0.64484 0.87372
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Data Description
ACHV Student achievements.
FAM Faculty credentials
PEER Influence of peer group in
school.
SCHOOL School facilities.

All variables are normalized indices.
Goal is to evaluate the effect of
school inputs on achievements.



Example: Effects on Inference

The goal of the analysis is to measure the effect of the school inputs on
achievements to asses Equal Education Opportunity. The variable SCHOOL is
an index and we assume that it measures those aspects of the school
environment that would affect achievement (physical plant, teaching
materials, special programs, etc.).
ACHV is an index constructed based on normalized test scores.
Before we can assess the effect of the school we need to account for other
variables that may influence ACHV, like the peer group and the personal
environment. We assume that thos are captured in the indices for PEER and
FAM.

ACHV = β0 + β1FAM + β2PEER + β3SCHOOL + ϵ
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Example: Effects on Inference

The contribution of the SCHOOL variable can be testes using the t-Test for β3.
The t-Test checks wheteher SCHOOL is necessary in the equation, given that
FAM and PEER are already included.
This can be interpreted as checking for an effect after the ACHV index has
been adjusted for FAM and PEER.

ACHV − β1FAM − β2PEER = β0 + β3SCHOOL + ϵ

Note: This model is only for the sake of interpretation the model on the previous
page is sufficient for the actual analysis.
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Example: Effects on Inference

mod <- lm(ACHV ~ 1 + FAM + PEER + SCHOOL, data=P236)
summary(mod)

##
## Call:
## lm(formula = ACHV ~ 1 + FAM + PEER + SCHOOL, data = P236)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.210 -1.393 -0.295 1.142 4.588
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.070 0.251 -0.28 0.78
## FAM 1.101 1.411 0.78 0.44
## PEER 2.322 1.481 1.57 0.12
## SCHOOL -2.281 2.220 -1.03 0.31
##
## Residual standard error: 2.07 on 66 degrees of freedom
## Multiple R-squared: 0.206, Adjusted R-squared: 0.17
## F-statistic: 5.72 on 3 and 66 DF, p-value: 0.00153
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Example: Effects on Inference

par(mfrow=c(1,2))
plot(rstandard(mod))
plot(fitted(mod), rstandard(mod))
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Example: Effects on Inference

Observation:

The regression model accounts for 20.63% of the data.
The F-Statistic with a value of 5.7168 is significant and indicates a joint effect
of the variables.
All t-Statistics are small and indicate that none of the variables individually
are significant.

Conclusion:

The given situation is common for settings wheremulticollinearity occurs.
The small t-values suggest that any of the variables can be dropped and the
joint R2 is affected by the realtionship among the predictors.
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Example: Effects on Inference
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Example: Effects on Inference

Combination FAM PEER SCHOOL

1 + + +
2 + + -
3 + - +
4 - + +
1 + - -
2 - + -
3 - - +
4 - - -

A "+" indicates a value above average in the data. The dataset only contains
combiantions 1 and 8 and is deficient so that not all partial effects can be
estimated.
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Example: Effects on Inference

The dataset containsmissing combinations which leads to the empy regions
in the pairsplot. There may be two reasons for this:

1) Incomplete data collection, so that collecting additional data leads do
disappearing multicollinearity.

2) The ground truth (population) only contains a specific set of combinations.
Then it is not possible to separate effects and estimate the individual effects on
achievement. A detailed investigation may lead to additinal variables thate are
more basic determinants for the response.
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Example: Effects on Forecasting

We now examine the effect of multicollinearity on forecasting.
The considered dataset (imports in the French economy) is index by time
(variable YEAR).
To generate forecasts for the response, future values of the predictor
variables are plugged into the estimated regression equation.
The future values of the predictor variables must be known or need to be
forecasted themselfes (not discussed in this course).
We assume that the future values of the predictor variables are given, which
is highly unrealistic and only for explanatory purposes.
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Example: Effects on Forecasting

P241

## YEAR IMPORT DOPROD STOCK CONSUM
## 1 49 15.9 149.3 4.2 108.1
## 2 50 16.4 161.2 4.1 114.8
## 3 51 19.0 171.5 3.1 123.2
## 4 52 19.1 175.5 3.1 126.9
## 5 53 18.8 180.8 1.1 132.1
## 6 54 20.4 190.7 2.2 137.7
## 7 55 22.7 202.1 2.1 146.0
## 8 56 26.5 212.4 5.6 154.1
## 9 57 28.1 226.1 5.0 162.3
## 10 58 27.6 231.9 5.1 164.3
## 11 59 26.3 239.0 0.7 167.6
## 12 60 31.1 258.0 5.6 176.8
## 13 61 33.3 269.8 3.9 186.6
## 14 62 37.0 288.4 3.1 199.7
## 15 63 43.3 304.5 4.6 213.9
## 16 64 49.0 323.4 7.0 223.8
## 17 65 50.3 336.8 1.2 232.0
## 18 66 56.6 353.9 4.5 242.9
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Data Description
YEAR Year of Observation.
IMPORT Import Volume.
DOPROD Domestic Production.
STOCK Stock Formation.
CONSUM Domestic Consumption.

Variables are measured in billion
French francs.



Example: Effects on Forecasting

mod <- lm(IMPORT ~ 1 + DOPROD + STOCK + CONSUM, data=P241)
summary(mod)

##
## Call:
## lm(formula = IMPORT ~ 1 + DOPROD + STOCK + CONSUM, data = P241)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.721 -1.835 -0.348 1.297 4.101
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -19.7251 4.1253 -4.78 0.00029 ***
## DOPROD 0.0322 0.1869 0.17 0.86565
## STOCK 0.4142 0.3223 1.29 0.21955
## CONSUM 0.2427 0.2854 0.85 0.40927
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 2.26 on 14 degrees of freedom
## Multiple R-squared: 0.973, Adjusted R-squared: 0.967
## F-statistic: 168 on 3 and 14 DF, p-value: 3.21e-11
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Example: Effects on Forecasting

plot(rstandard(mod), type="b")
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Example: Effects on Forecasting

IMPORT = β0 + β1DOPROD + β2STOCK + β3CONSUM + ϵ

The index plots of the residuals suggests that the model is not well specified,
even though the R2 is high.
The problem reflected in the data is that the European Common Market
began operations in 1960, causing changes in import-export relationships.
Our objective is to study the effect ofmulticollinearity, we decide to ignore
the dynamics after 1959 and only anlyze the first 11 years of data.
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Example: Effects on Forecasting

mod <- lm(IMPORT ~ 1 + DOPROD + STOCK + CONSUM, data=head(P241,11))
summary(mod)

##
## Call:
## lm(formula = IMPORT ~ 1 + DOPROD + STOCK + CONSUM, data = head(P241,
## 11))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5237 -0.3895 0.0542 0.2264 0.7831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -10.1280 1.2122 -8.36 6.9e-05 ***
## DOPROD -0.0514 0.0703 -0.73 0.48834
## STOCK 0.5869 0.0946 6.20 0.00044 ***
## CONSUM 0.2868 0.1022 2.81 0.02628 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.489 on 7 degrees of freedom
## Multiple R-squared: 0.992, Adjusted R-squared: 0.988
## F-statistic: 286 on 3 and 7 DF, p-value: 1.11e-07
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An increase in Domestic Production
should cause an increase in the
imports, when STOCK and CONSUM
are held constant. Contrary to the
prior model and to our believes, the
coefficient for DOPROD is not
statistically significant. The residuals

show no suspicious patterns.



Example: Effects on Forecasting

kable(round(cor(head(P241,11)),4))

YEAR IMPORT DOPROD STOCK CONSUM

YEAR 1.0000 0.9476 0.9952 -0.0329 0.9952
IMPORT 0.9476 1.0000 0.9653 0.2507 0.9719
DOPROD 0.9952 0.9653 1.0000 0.0259 0.9973
STOCK -0.0329 0.2507 0.0259 1.0000 0.0357
CONSUM 0.9952 0.9719 0.9973 0.0357 1.0000

Investigation reveals that correlation between CONSUM and DOPROD is very
high throughout the 11 year period.
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Example: Effects on Forecasting

The estimated relationship between CONSUM and DOPROD is given below.

̂CONSUM = 6.259 + 0.686(DOPROD) (1)

Even in the presence of severe multicollinearity the regression equationmay
produce some good forecasts. The forecasting equation follows directly from
the regression output.

̂IMPORT = −10.128 − 0.051(DOPROD) + 0.587(STOCK) + 0.287(CONSUM) (2)

For our purpose we must be confident that the character and strength of the overall
relationship will hold into future periods (which is untrue in the given case, but ignored for
convenience of explanation).
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Example: Effects on Forecasting

If we forecast the change in IMPORT next year corresponding to tan in crease
in DROPROD of 10 units while holding STOCK and CONSUMat their current
levels:

IMPORT1960 ≈ IMPORT1959 − 0.051 · 10

This leads to an decrease in IMPORT by ≈ 0.51 units. However, if the
relationship between DOPRODand CONSUM is kept intact, CONSUM will
increase as well and the forecasted results changes and yields a forecased
increase in IMPORT.

IMPORT1960 ≈ IMPORT1959 − 0.051 · 10 + 0.287 · 0.686 · 10
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Simple Signs of Collinearity

In the following we review the discussed ideas and introduce additional
criteria that indicate multicollinearity.
Besides simple indicators we are going to consider the two criteria Variance
Inflation Factors (VIF) and Condition Indices.
Simple indicators of multicollinearity are usually encountered during the
process of adding, deleting or transforming variables or data points while
searching for a good model.
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Simple Signs of Collinearity

Indications of multicollinearity that appear as instability in the estimated
coefficients are as follows:

Large changes in the estimated coefficients when a variables is added or
deleted.
Large changes in the estimated coefficients when a data point is added or
deleted.

Once the residual plots indicate that the model has been satisfactorily specified,
collinearity may be present if:

The algebraic signs of estimated coefficients do not conform to prior
expectations.
Coefficients of variables that are expected to be important have large
standard errors (small t-values).
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Simple Signs of Collinearity

The table shows the effect of adding an removing a variable for the French
economy data. We see that the presence or absence of certain variables has
a large effect on the other coefficients.
This problem is visible in the pairwise correlation coefficients.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
(Intercept) −6.56∗ 19.61∗∗∗ −8.01∗∗ −8.44∗∗∗ −8.88∗ −9.74∗∗∗ −10.13∗∗∗

(2.59) (3.25) (2.44) (1.44) (2.85) (1.06) (1.21)
DOPROD 0.15∗∗∗ 0.15∗∗∗ −0.11 −0.05

(0.01) (0.01) (0.17) (0.07)
STOCK 0.69 0.62∗∗ 0.60∗∗∗ 0.59∗∗∗

(0.89) (0.13) (0.09) (0.09)
CONSUM 0.21∗∗∗ 0.37 0.21∗∗∗ 0.29∗

(0.02) (0.24) (0.01) (0.10)
R2 0.93 0.06 0.94 0.98 0.95 0.99 0.99
Adj. R2 0.92 −0.04 0.94 0.98 0.93 0.99 0.99
Num. obs. 11 11 11 11 11 11 11
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 4: Statistical models
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Simple Signs of Collinearity

The source of multicollinearity may be more subtle than the simple relationship
between two variables so that itmay not be possible to detect such a
relationship with a simple coerrelation coefficient.

kable(cor(P248)) # Advertising Data

St At Pt Et At.1 Pt.1

St 1.0000 -0.1704 0.5402 0.8109 -0.3052 -0.0520
At -0.1704 1.0000 -0.3570 -0.1285 -0.1397 -0.4960
Pt 0.5402 -0.3570 1.0000 0.0626 -0.3165 -0.2964
Et 0.8109 -0.1285 0.0626 1.0000 -0.1664 0.2081
At.1 -0.3052 -0.1397 -0.3165 -0.1664 1.0000 -0.3578
Pt.1 -0.0520 -0.4960 -0.2964 0.2081 -0.3578 1.0000
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Simple Signs of Collinearity

P248

## St At Pt Et At.1 Pt.1
## 1 20.11 1.9879 1.0 0.30 2.0172 0.0
## 2 15.10 1.9442 0.0 0.30 1.9879 1.0
## 3 18.68 2.1995 0.8 0.35 1.9442 0.0
## 4 16.05 2.0011 0.0 0.35 2.1995 0.8
## 5 21.30 1.6929 1.3 0.30 2.0011 0.0
## 6 17.85 1.7433 0.3 0.32 1.6929 1.3
## 7 18.88 2.0691 1.0 0.31 1.7433 0.3
## 8 21.27 1.0171 1.0 0.41 2.0691 1.0
## 9 20.48 2.0191 0.9 0.45 1.0171 1.0
## 10 20.54 1.0614 1.0 0.45 2.0191 0.9
## 11 26.18 1.4600 1.5 0.50 1.0614 1.0
## 12 21.72 1.8751 0.0 0.60 1.4600 1.5
## 13 28.70 2.2711 0.8 0.65 1.8751 0.0
## 14 25.84 1.1119 1.0 0.65 2.2711 0.8
## 15 29.32 1.7741 1.2 0.65 1.1119 1.0
## 16 24.19 0.9588 1.0 0.65 1.7741 1.2
## 17 26.59 1.9893 1.0 0.62 0.9588 1.0
## 18 22.24 1.9711 0.0 0.60 1.9893 1.0
## 19 24.80 2.2660 0.7 0.60 1.9711 0.0
## 20 21.19 1.9835 0.1 0.61 2.2660 0.7
## 21 26.03 2.1005 1.0 0.60 1.9835 0.1
## 22 27.39 1.0681 1.0 0.58 2.1005 1.0
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Data Description
St Sales Volume.
At Advertising Expenditures.
Pt Promotion Expenditures.
Et Sales Expense.

At−1 and Pt−1 are the lagged
one-year variables.



Simple Signs of Collinearity

mod <- lm(St ~ 1 + At + Pt + Et + At.1 + Pt.1, data=P248)
summary(mod)

##
## Call:
## lm(formula = St ~ 1 + At + Pt + Et + At.1 + Pt.1, data = P248)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.860 -0.985 0.132 0.702 2.205
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.19 18.72 -0.76 0.459
## At 5.36 4.03 1.33 0.202
## Pt 8.37 3.59 2.33 0.033 *
## Et 22.52 2.14 10.51 1.4e-08 ***
## At.1 3.85 3.58 1.08 0.297
## Pt.1 4.12 3.90 1.06 0.305
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1.32 on 16 degrees of freedom
## Multiple R-squared: 0.917, Adjusted R-squared: 0.891
## F-statistic: 35.3 on 5 and 16 DF, p-value: 4.29e-08
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Simple Signs of Collinearity

par(mfrow=c(1,2))
plot(rstandard(mod), fitted(mod))
plot(rstandard(mod), type="b")
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Simple Signs of Collinearity

par(mfrow=c(1,3))
plot(rstandard(mod), P248$At)
plot(rstandard(mod), P248$Pt)
plot(rstandard(mod), P248$Et)
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Simple Signs of Collinearity

The residual plots do not exhibit clear signs of misspecification and the
correlation between the predictors is moderate and does not indicate a
problem.
Experimentation shows that dripping the advertising variable At leads to
severe changes in the coefficients (coefficient of Pt drops significantly,
coefficients of lagged values change signs.)

mod.experiment <- lm(St ~ 1 + Pt + Et + At.1 + Pt.1, data=P248)
coef(mod.experiment)

## (Intercept) Pt Et At.1 Pt.1
## 10.5094 3.7018 22.7942 -0.7692 -0.9687
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Simple Signs of Collinearity

The reason for the multicollinearity in the previous example is a budget
constraint so that the sum of At, At−1, Pt and Pt−1 was held approximately
constant:

At + At−1 + Pt + Pt−1 ≈ 5

This can be empirically confirmed by regressing At on At−1, Pt and Pt−1.

mod.constraint <- lm(At ~ 1 + Pt + At.1 + Pt.1, data=P248)
equatiomatic::extract_eq(mod.constraint, use_coef=T)

Ât = 4.63 − 0.87(Pt) − 0.86(At. 1) − 0.95(Pt. 1) (3)
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Variance Inflation Factors (VIF)

A thorough investigation of muticollinearity will involve examining the value
of R2 that results from regression each of the predictors against all others.
The resulting effects can be judged by examining a quantitiy called variance
inflation index (VIF).

VIFj =
1

1 − R2j
with j = 1, . . . , p

R2j denotes the multiple correlation coefficient from regression the predictor
Xj on all other p − 1 predictor variables.
When Xj has a strong linear relationship with the other variables, R2j will be
close to 1 and VIFj will be large.

A VIF > 10 is often taken as indicator that the data has multicollinearity problems.
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Variance Inflation Factors (VIF)

When R2j is close to zero VIF ≈ 1. The departure from 1 indicates departure
from orthogonality and tendency toward collinearity.
The naming is derived from the fact that VIFj measures the amount by which
the variance of the j-th regression coefficient is increased due to the linear
association of Xj with other predictors relative to the value of the variance
that would result in absence of a linear relation.
As R2j approaches 1, the VIFj for β̂j tends to infinity.
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Variance Inflation Factors (VIF)

The precision of the OLS estimates is measured by its variance, which is
proportional to the variance of the error term in the regression model σ2.
The constant of proportionality is the VIF.
The VIF’s therefore can be used to obtain an expression for the expected
squared distance of the OLS estimators from their true values. The smaller
D2 the more accurate are the estimates.

D2 = σ2
p∑
j=1

VIFj
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Variance Inflation Factors (VIF)

If the predictors were orthogonal, the VIF’s would be equal to 1 and
D2 = pσ2. It follows that the ratio VIF measures the squared error in the OLS
estimators relative to the size of the error if the data were orthogonal.

VIF =
σ2 ∑p

i=1 VIFi
pσ2 =

∑p
i=1 VIFi
p

VIF can also be used as an index for multicollinearity.
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Variance Inflation Factors (VIF)

# Equal Education Opportunity Data
mod.eeo <- lm(ACHV ~ 1 + FAM + PEER + SCHOOL, data=P236)
vif.eeo <- car::vif(mod.eeo)
c(vif.eeo, averageVIF = mean(vif.eeo))

## FAM PEER SCHOOL averageVIF
## 37.58 30.21 83.16 50.32

# Import Data
mod.imp <- lm(IMPORT ~ 1 + DOPROD + STOCK + CONSUM, data=P241)
vif.imp <- car::vif(mod.imp)
c(vif.imp, averageVIF = mean(vif.imp))

## DOPROD STOCK CONSUM averageVIF
## 469.74 1.05 469.37 313.39

# Advertising Data
mod.adv <- lm(St ~ 1 + At + Pt + Et + At.1 + Pt.1, data=P248)
vif.adv <- car::vif(mod.adv)
c(vif.adv, averageVIF = mean(vif.adv))

## At Pt Et At.1 Pt.1 averageVIF
## 36.942 33.474 1.076 25.916 43.521 28.186
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Condition Indices

Another way to detect collinearity in the data is to examine the condition
indices fo the correlation matrix of the predictor variables.
The condition indices are based on the eigenvalues λ1, λ2, . . . , λp of them
correlation matrix. If any λ = 0, there is perfect linear relationship, which is
an extreme case of collinearity. Strong heterogeneity in the eigenvalues (one
value much smaller than the others) also indicates mulitcollinearity.
An empirical criterion for the presence of collinearity is given by the sum of
the reciprocals of the eigenvalues of the correlation matrix. If that sum is
much larger (e.g. 5 times larger) than the number of predictor variables p,
collinearity is present.

p∑
j=1

1
λi
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Condition Indices

The condition indices measures the overall collinearity of the variables. The
j-th condition index is given by

κj =

√
λ1

λp
for j = 1, 2, . . . , p

The largest condition index is called condition number of the matrix. If that
condition number is small, then the predictor variables are not collinear. A
large condition number indicates strong evidence of collinearity.
Corrective actions should be taken, when the conditio number exceeds 15
(which means that λ1 is more than 225 times λp)
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Condition Indices
# Equal Education Opportunity Data
mod.eeo <- lm(ACHV ~ 1 + FAM + PEER + SCHOOL, data=P236)
round(olsrr::ols_eigen_cindex(mod.eeo), 4)

## Eigenvalue Condition Index intercept FAM PEER SCHOOL
## 1 2.9547 1.000 0.0005 0.0030 0.0037 0.0014
## 2 0.9974 1.721 0.9756 0.0000 0.0000 0.0000
## 3 0.0400 8.600 0.0004 0.3068 0.4428 0.0008
## 4 0.0079 19.283 0.0235 0.6903 0.5535 0.9978

# Import Data
mod.imp <- lm(IMPORT ~ 1 + DOPROD + STOCK + CONSUM, data=head(P241,11))
round(olsrr::ols_eigen_cindex(mod.imp), 4)

## Eigenvalue Condition Index intercept DOPROD STOCK CONSUM
## 1 3.8384 1.000 0.0010 0.0000 0.0109 0.0000
## 2 0.1484 5.086 0.0053 0.0001 0.9385 0.0001
## 3 0.0132 17.073 0.7743 0.0015 0.0330 0.0011
## 4 0.0001 265.461 0.2193 0.9984 0.0175 0.9989

# Advertising Data
mod.adv <- lm(St ~ 1 + At + Pt + Et + At.1 + Pt.1, data=P248)
round(olsrr::ols_eigen_cindex(mod.adv), 4)

## Eigenvalue Condition Index intercept At Pt Et At.1 Pt.1
## 1 5.2810 1.000 0.0000 0.0000 0.0002 0.0023 0.0001 0.0002
## 2 0.3798 3.729 0.0000 0.0000 0.0075 0.0003 0.0000 0.0118
## 3 0.2272 4.821 0.0000 0.0015 0.0160 0.0000 0.0011 0.0054
## 4 0.0601 9.378 0.0000 0.0047 0.0004 0.2912 0.0160 0.0006
## 5 0.0518 10.099 0.0001 0.0084 0.0029 0.7030 0.0024 0.0053
## 6 0.0002 176.123 0.9998 0.9853 0.9730 0.0032 0.9805 0.9767 45



Conclusion

Using the described techniques we can now detect multicollinearity.
However, it is unclear how to deal with variables that cause collinearity
issues. Removing those variables is often not a viable option.
We will learn better ways of dealing with collinearity in the next chapter.

46


	Organizational Information
	Multicollinearity
	Effects of Multicollinearity
	Detection of Collinearity

