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Multicollinearity



Introduction

m When multicollinearity is present, the least squares estimates of the
individual regression coefficients ten to be unstable and can lead to
erroneous inferences.

m In the last session we discussed the problem of multicollinearity and ways to
diagnose this problem. We found that eliminating predictors from the
analysis does not always work and in most analytical settings is not a feasible
option.

m We consider two alternative approaches for dealing with multicollinearity:

> Imposing or searching for constraints on the regression parameters.
» Using alternative estimation techniques (e.g. principal components regression
and ridge regression).



Principal Components



Principal Components

m The principal components method is based on the fact that any set of p
predictors X1, Xz, . . ., X, can be transformed to a set of p orthogonal
variables.

m The new orthogonal variables are known as the principal components and
are denoted by C1,Cy, ..., Cp.

m Each variable G is a linear function of the standardized variables
X1, Xa, oo, Xp.

Cj=v1j)~(1+v2j)~(2+...+vp,-)~(p for j=1,2,...,p



Principal Components

m The coefficients of the linear functions are chosen so that the variables
C1,...,Cp, are orthogonal.

m The coefficients for the j-th principal components C; are the elements of the
j-th eigenvector that corresponds to the eigenvalue )\;, the j-th largest
eigenvalue of the correlation matrix of the p variables.

Vir V2o - Vyp

Vo1 Vo2 - Vpp
V= (V1 V2 Vp> =

Vp1 Vp2  cr Vpp



Example: French Econmony Data

Data Description

YEAR Year of Observation.
IMPORT Import Volume.
DOPROD Domestic Production.

P241

## YEAR IMPORT DOPROD STOCK CONSUM

## 1 49 15.9 149.3 4.2 108.1 STOCK StOCk Formation.

## 2 50 16.4 161.2 4.1 114.8

##3 51 19.0 1715 3.1 123.2 CONSUM Domestic Consumption.
## 4 52 19.1 175.5 3.1 126.9

## 5 53 18.8 180.8 1.1 132.1 . . re
#6 54 204 190.7 2.2 137.7 Variables are measured in billion
##* 7 55 22.7 202.1 2.1 146.0 FrenCh franCS

## 8 56 26.5 212.4 5.6 154.1 .

## 9 57 28.1 226.1 5.0 162.3

## 10 58 27.6 231.9 5.1 164.3

## 11 59 26.3 239.0 0.7 167.6

## 12 60 31.1 258.0 5.6 176.8

## 13 61 33.3 269.8 3.9 186.6

## 14 62 37.0 288.4 3.1 199.7

## 15 63 43.3 304.5 4.6 213.9

## 16 64 49.0 323.4 7.0 223.8

## 17 65 50.3 336.8 1.2 232.0

## 18 66 56.6 353.9 4.5 242.9



Principal Components

m It can be shown that the variance of the j-th principal component is
Var(Cj) = \jforj=1,2,...,p. Therefore the variance-covariance matrix of
the principal components is

A O - 0
0 X -+ O
0 0 - X

m All the off-diagonal elements are zero because the principal components are
orthogonal. The value of the j-th diagonal element J; is the variance of G,
the j-th principlal component.

m The principal components are arranged so that A\; > A\, > ... A, which
means that the first component has the largest variance.
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Principal Components

d <- head(P241[ ,c("DOPROD", "STOCK", "CONSUM")], 11)
d.pca <- prcomp(d, center=TRUE, scale=TRUE)

C <- d.pca$x

round(C, 4)

## PC1 PC2 PC3
## 1 -2.1259 0.6387 -0.0207
## 2 -1.6189 0.5555 -0.0711
## 3 -1.1152 -0.0730 -0.0217
## 4 -0.8943 -0.0824 0.0108
## 5 -0.6442 -1.3067 0.0726
## 6 -0.1904 -0.6591 0.0266
## 7 0.3596 -0.7437 0.0428
## 8 0.9718 1.3541 0.0629
## 9 1.55693 0.9640 0.0236
## 10 1.7670 1.0152 -0.0450
## 11 1.9311 -1.6627 -0.0806

11



Principal Components

Remember
cormat <- cor(d) Multicollinearity leads to heterogeneous
eigen(cormat)  # Eigen Decomposition of Correlation Matriz sizes of eigenvames so that one
eigenvalue is much smaller than the
## eigen() decomposition others. When one eigenvalue is exactly
gedtialiss zero a perfect linear relationship (special

## [1] 1.999155 0.998154 0.002691
# case of extreme multicollinearity) among
## $vectors th Py | . bl . t

s La Lal L) e original variables exists.
## [1,] -0.7063 0.03569 0.706982

## [2,] -0.0435 -0.99903 0.006971

## [3,] -0.7065 0.02583 -0.707197 The variance-covariance matrix of the
new variables only has entries on the
round(var(C) ,4) # Variance-Covariance Matriz of PCs main dlagonal (WhICh Correspond to the

eigenvalues) and zeros in all other places
(as the variables are orthogonal).

## PC1 PC2 PC3

## PC1 1.999 0.0000 0.0000

## PC2 0.000 0.9982 0.0000

## PC3 0.000 0.0000 0.0027
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Principal Components

m The principal components lack simple interpretation as they are a mixture of
the (standardized) original variables.

m Since ); is the variance of the j-th principal component, a value of A\; = 0
shows that the respective principal componennt C; is equal to a constant.
That constant is the mean value of C; (which is zero as the variables have
been standardized).

m Inspecting the eigenvectors of the previous example shows that only the
variables CONSUM and DOPROD play a relevant role when determining Cs.

## X1_tilde X2_tilde X3_tilde
## 0.706982 0.006971 -0.707197

Xl =~ X3 as V3 = 0.007 =~ 0
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Principal Component Regression
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Principal Component Regression

m We consider the model for the French Economony Dataset

IMPORT = 3, + 3,DOPROD + 3,STOCK + 33CONSUM + ¢

m This model expressed using the standardized variables Y = (y; — y)/s, and
X; = (xj — X;)/s yields

Y= 915(1 + 925(2 + 935(3 +é

m Utilizing the principal components of the standardized predictors the model
can be written as

Y= a1C1 +aCy + a3C3 + ¢
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Principal Component Regression

# Data Preparation
d <~ head(P241,11)
d_scaled <- as.data.frame(scale(d))
d_prcomp <- as.data.frame(cbind(1MPORT-d_scaled$IMPORT,
prcomp(d[,c("DOPROD" , "STOCK" , "CONSUM™)],
center=TRUE, e=T)$x))

# Motel Estimation
modl <- 1m(IMPORT ~ 1 + DOPROD + STOCK + CONSUM, data=d)
(mod2 <- 1m(IMPORT ~ -1 + DOPROD + STOCK + CONSUM, data-d_scaled))

## Call:
## 1lm(formula = IMPORT ~ -1 + DOPROD + STOCK + CONSUM, data = d_scaled)

## Coefficients:
## DOPROD  STOCK CONSUM
## -0.339 0.213 1.303

(mod3 <- 1m(IMPORT ~ -1 + PC1 + PC2 + PC3, data-d_prcomp))

##

## Call:

## 1m(formula = IMPORT ~ -1 + PC1 + PC2 + PC3, data = d_prcomp)
##

## Coefficients:

## PC1 PC2 PC3

## 0.690 0.191 1.160
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Principal Component Regression

ev <- eigen(cor(d[,c("DOPROD", "STOCK","CONSUM")]))$vectors

# Multiply eigenvectors with constant to match output in book
# Note: Eigenvectoren not consistent

if( all(ev[,1] < c(0,0,0))) ev[,1] <- ev[,1] * -1
if(tall(ev[,2] < c(0,1,0))) ev[,2] <- ev[,2] * -1
if(tall(ev[,3] < ¢(0,0,1))) ev[,3] <- ev[,3] * -1

# Eigenvectors
ev

## [,1] [,2] [,3]
## [1,] 0.7063 -0.03569 —0.706982
## [2,] 0.0435 0.99903 -0.006971
## [3,] 0.7065 -0.02583 0.707197
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Principal Component Regression

m The coefficients of the principal component regression can be calculated
based on the regression coefficients from the model using the standardized

values.
ap = 0.706 0, + 0.044 0, + 0.707 0,
a, = —0.036 64 + 0.999 6, + —0.026 0,
Q3 = —0.707 91 + —0.007 92 + 0.707 93

m Conversely this relationship can be turned around to obtain the coefficients
from the regression with standardized variables from the principal
component regression.

1 = 0706 o + —-0.036 o, + —-0.707 a3
0, = 0044 o + 0.999 a, + —0.007 o3
93 = 0.707 o + —0.026 oy + 0.707 Q3
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Principal Component Regression

# Calculate alpha (principal components) from theta (standardized variables)
as.vector (coef (mod2) %*% ev)

## [1] 0.6900 0.1913 1.1597

coef (mod3)

## PC1 PC2 PC3
## 0.6900 0.1913 1.1597

# Calculate theta (standardized variables) from alpha (principal components)
as.vector(ev %% coef (mod3))

## [1] -0.3393 0.2130 1.3027

coef (mod2)

## DOPROD  STOCK CONSUM
## -0.3393 0.2130 1.3027
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Principal Component Regression

Y = 915(1 + 92;(2 + 93;(3 + €
= a1 + aC + a3C + ¢

m Although the above equations both hold, the C's are orthogonal.

m The orthogonality bypasses (but not eliminates) the multicollinearity
problem, however, the resulting relationship and therefore the coefficients
are not easily interpreted.

m The o's unlike the 6's do not have simple interpretations as marginal effects
of the original (standardized) predictor variables.

The final estimation results are always restated in terms of the 6’s or origninal 3’s for
interpretation!
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Principal Component Regression

Based on the coefficients obtained from regressing the standardized variables the
relationship can be expressed in terms of the original 3;’s using the following
relationship:

~ Sy A .
Bi==20 for j=1,2,...,p

5j

Bo =V — BaXs — BoXa — ... — BpXp

This back-transform of the variables to the original scale is crucial for
interpretation of the final results!
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Reduction of Multicollinearity in the Data

m Principal component regression can be used to reduce collinearity in the

estimation data.
m this can be achieved by using less than the full set of principal components

to explain the variation in the response.
m When all principal components are used the OLS solution can be exactly

reproduced (as seen before).
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Reduction of Multicollinearity in the Data

m The Cj’s have sample variances A1, Az, . .., Ap equal to their eigenvalues.

eigen(cor(d[,c("DOPROD","STOCK","CONSUM")]))$values

## [1] 1.999155 0.998154 0.002691

m Since C; has very small variance, the linear function defining Cs is
approximately equal to zero and is the source of collinearity in the data.
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Reduction of Multicollinearity in the Data

m We exclude C; from the analysis and consider the two possible remaining
regression models

Y=041C1+6
V=CV1C1+042C2+6

There are two important things to note here:

In an regression equation where the full set of potential predictor variables
under consideration are orthogonal, the estimated values of the regression
coefficients are not altered when subsets of these variables are either
introduced or deleted.

Both models lead to estimates for all three of the original standardized
coefficients 04, 6, and 0.
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Reduction of Multicollinearity in the Data

mod_prcompl <- 1lm(IMPORT ~ -1 + PC1 , data=d_prcomp)
mod_prcomp2 <- 1m(IMPORT ~ -1 + PC1 + PC2 , data=d_prcomp)
mod_prcomp3 <- 1lm(IMPORT ~ -1 + PC1 + PC2 + PC3, data=d_prcomp)

Model 1 Model 2 Model 3

PC1 0.69"**  0.69"**  0.69%**
(0.05) (0.03) (0.02)

PC2 0.19***  0.19***
(0.04) (0.03)
PC3 1.16
(0.61)
R? 0.95 0.99 0.99
Adj. R? 0.95 0.99 0.99

Num. obs. 11 11 11

**¥p < 0.001; "*p < 0.01; *p < 0.05

Table 2: Statistical models
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Reduction of Multicollinearity in the Data

# Coefficients for standardized predictors when using one principal component
coefsl <- coef (mod3) [1] * ev[,1]

names (coefs1) <- c("DOPROD","STOCK","CONSUM")

coefsl

## DOPROD STOCK CONSUM
## 0.48736 0.03001 0.48750

# Coefficients for standardized predictors when using two principal components
coefs2 <- coef(mod3)[1] * ev[,1] + coef(mod3)[2] * ev[,2]

names (coefs2) <- c("DOPROD","STOCK","CONSUM")

coefs2

## DOPROD STOCK CONSUM
## 0.4805 0.2211 0.4826

26



Reduction of Multicollinearity in the Data

s <- apply(d[ ,c("IMPORT","DOPROD","STOCK","CONSUM")],2,sd)
m <- apply(d[ ,c("IMPORT","DOPROD","STOCK","CONSUM")],2,mean)

# Model with one PC for non-standardized data
coefs_orgl <- s[1]/s[2:4] * coefsl

intercept_orgl <- unname(m[1] - sum(m[2:4]*coefs_orgl))
(beta_orgl <- c(Intercept=intercept_orgl, coefs_orgl))

## Intercept DOPROD STOCK CONSUM
## -7.74583 0.07381 0.08269 0.10735

# Model with two PCs for non-standardized data
coefs_org2 <- s[1]/s[2:4] * coefs2

intercept_org2 <- unname(m[1] - sum(m[2:4]*coefs_org2))
(beta_org2 <- c(intercept=intercept_org2, coefs_org2))

## Intercept DOPROD STOCK CONSUM
## -9.13011 0.07278 0.60922 0.10626
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Reduction of Multicollinearity in the Data

m Itis evident that using different numbers of principal components gives
substantially different results.

m | has already been argued that the OLS estimates are unsatisfactory (the
negative coefficient of X; is unexpected and cannot be sensibly interpreted.

m The third principal component is the cause of multicollinearity as it is almost
constant.

m Of the remaining two components the first one is associated with the effect
of DOPROD and CONSUM. The second is uniquely associated with STOCK (as
only the coefficient for STOCK changes when C is added to the regression of
IMPORT on C,).

Principal component regression can be influenced by the presence of
high-leverage points and outliers, which should be removed beforehand.
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Reduction of Multicollinearity in the Data

m The following table shows that the coefficients are dependent on the
number of incorporated principal components.

m As each component explains additional variance the R? increases with the
number of considered principal components.

std_PC1 org_PC1 std_PC2 org_PC2 std_PC3 org_PC3

Intercept NA -7.746 NA -9.130 NA -10.128
DOPROD 0.487 0.074 0.481 0.073 -0.339 -0.051
STOCK 0.030 0.083 0.221 0.609 0.213 0.587
CONSUM 0.488 0.107 0.483 0.106 1.303 0.287
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Caution when using Principal Component Regression

m Principal component regression is not guaranteed to work with all datasets.

m The following dataset (Hald’s dataset) suffers from multicollinearity issues,
when calculating the principal components the following model can be
estimated, where U is the standardized response and the C;’s are the
principal components.

U=a1Cy+ayCy + a3C3+ a4Cyq + €

m It can be seen that in the full model only a4 is significant, and almost the
complete variability of the response (R? ~ 1) is captured. When C, is
dropped the remaining three components account for none of the variability
of (R? ~ 0).
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Caution when using Principal Component Regression

#TODO: Fiz Dataset and show regression models with impact on R2
P278 # Dataset defect

## Y.X1.X2.X3.X4
## 1 78.5 7 26 6 60
## 2 74.3 1 29 15 52
## 3 104.3 11 56 8 20
## 4 87.6 11 31 8 47
## 5 95.9 7 52 6 33
## 6 109.2 11 55 9 22
## 7 102.7 3 71 17 6
## 8 72.5 1 31 22 44
## 9 93.1 2 54 18 22
## 10 115.9 21 47 4 26
## 11 83.8 1 40 23 34
## 12 113.3 11 66 9 12
## 13 109.4 10 68 8 12
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Ridge Regression
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Ridge Regression

m Ridge regression provides an alternative estimation method that can be
employed when the predictor variables are highly collinear.

m There are multiple computational variations of the ridge regression, the
presented one is associated with the ridge trace.

m Ridge analysis using the ridge trace represents a unified approach to
problems of detection and estimation when multicollinearity is suspected.

m The estimators produced are biased but tend to have a smaller mean
squared error when compared to OLS estimators.

The ridge method shrinks the estimated coefficients toward zero. This class of
estimators is sometimes called Shrinkage Estimators.
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Ridge Regression

Y= 015(1 + 025(2 + 93;(3 +¢

m Based on the standardized form of the regression model, the estimation
equations for the ridge regression are given

(1+k) 0, + rio 0, + ... + rp 0p = Iy
ry 0, + (1+k) 6, + ... + rp 0,, = Iy
Ip1 91 + Ip2 02 + ... + (1+k) 9,, = fpy

m Here r;, is the correlation coefficient between the i-th predictor and and the
response variable Y.
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Ridge Regression

m The ridge estimates may be viewed as resulting from a set fo data that ha
sbeen slightly altered.

m The essential parameter that distinguishes ridge regression from OLS is k.
When k = 0 the s are the OLS estimates.

m The paramterter k may be referred to as the bias parameter. As k increases
from zero, the bias of the estimates increases.
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Ridge Regression

p
Total Variance(k) = Y _ Var(fi(k)) = 0> (A ijk 2
J

=1 =1

p
Total Variance(0 Z X
j=1

m As k continues to increase, the regression estimates all tend toward zero.

m The idea of ridge regression os to pick a value of k for which the reduction in
total variance is not exceeded by the increase in bias.

® In practice a value of k is shown by computing éy, . .., §, for a range of k
values between 0 and 1 and plotting the results against k. The resulting
graph is know as the ridge trace and can be used to select an appropriate
value for k.
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Ridge Regression Estimation

y <- as.numeric(scale(head(P241,11)$IMPORT))

x <- as.matrix(scale(head(P241,11)[,c("DOPROD","STOCK","CONSUM")]))
k <- rev(seq(0,1,0.001))

mod <- glmnet::glmnet(x,y, family="gaussian", lambda = k, alpha = 0)

mod

##

## Call: glmnet::glmnet(x = x, y =y, family = "gaussian", alpha = 0, lambda = k)
#it

## Df %Dev Lambda

## 1 3 86.6 1.000

## 2 3 86.6 0.999

## 3 3 86.6 0.998

## 4 3 86.7 0.997

## 5 3 86.7 0.996

## 6 3 86.7 0.995

#H 7 3 86.7 0.994

## 8 3 86.7 0.993

## 9 3 86.7 0.992

## 10 3 86.7 0.991

## 11 3 86.8 0.990

## 12 3 86.8 0.989

## 13 3 86.8 0.988

## 14 3 86.8 0.987

## 16 3 86.8 0.986 37

## 16 3 86.8 0.985



Ridge Trace

plot (k,rep(NA,length(k)),type="1",ylim=c(-0.3, 0.8), ylab="Coefficient")
lines(k, mod$betall,], col = "blue" ) # Coefficient for DOPROD

lines(k, mod$betal3,], col = "red" ) # Coefficient for CONSUM

lines(k, mod$betal2,], col = "green") # Coefficient for STOCK
abline(h=0, lty="dashed", col="darkgrey")
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Ridge Regression

m When working with collinear data the values for k are typically chosen at the
low end of the range.

m If the estimated coefficients show large fluctuations for small values of k,
instability has been demonstrated and collinearity is probably at work.

m The previously shown ridge trace plot shows that the coefficients fconsum
and Opoprop are quite unstable for small values of k. The unplausible
negative coefficient disappears quickly and stabilizes around 0.4.

m The coefficient fsrock is unaffected by the collinearity and remains almost
stable throughout the range of k.
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Ridge Regression

The next step in ridge analysis is to select a value of k and to obtain the
corresponding estimates of the regression coefficients. As k is a bias parameter it

is dersirable ro select the smallest value of k for which stability occurs. Several
methods have been suggested:

1. Fixed Point Method 2. Iterative Method 3. Ridge Trace
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Ridge Regression: Fixed Point Method

m Here 6,(0), .. ., ép(O) are the parameters of the OLS estimate, when k = 0,
and 62(0) is the corresponding mean square.
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Ridge Regression: Interative Method

p62(0) p62(0)

k = A -~ . - k = —~n -~ . -
OSPbko SGk)R

m Start with the initial estimate of ko which is the resulting estimate from the
fixed point estimation procedure.

m Then use the previous value of k to determine the next one and repeat this
process until the difference between two successive estimates of k is
neglegible (until the algorithm converges).
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Ridge Regression: Ridge Trace

m The behavior of éj(k) as a function of k is easily observed from the ridge
trace.

m The value of k selected is the smalles value for which all the coefficients éj(k)
are stable.

m In addition, at the selected value of k the residual sum of squares should be
close to is minimum value.

m The variance inflation factors VIF;(k) should also get down to less than 10.
Recall that a value of VIF; = 1 is a characteristic of an orthogonal system and
a value of less than 10 indicates an noncollinear or stable system.
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