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Introduction

So far we assumed that the variables in our equation were chosen in
advance and we focused on examining the resulting equation and whether
the specified functional form was correct.
In most practical applications the regression model is not predetermined
and it is often the first part of the analysis to select these variables.
Given that theoretical considerations determine the variables to be included
in the model, the seleciton problem does not arise. However, often there is
no clear-cut theory and the variable selection problem gains importance.
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Variable Selection Problem

The problem of variable selection and finding an adequate funcitnoal
specification of the equation are linked to each other.

▶ Which variables should be included?
▶ In which form should they be included (X, X2, log(X))?

Ideally the two problems should be solved simultaneously. For the sake of
simplicity we cover them sequentially by first determining which variables
should be included in the model and then investigate their exact form in
which they enter it.
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Variable Selection Problem

yi = β0 +
q∑
j=1

βjxij + ϵi

We have the response Y and q predictor variables X1, X2, . . . , Xq, but instead
of dealing with the full set of variables (especially when q is large), we delete
a number of variables and construct the equation with the remaining
subset.
We denote the retained variables by X1, X2, . . . , Xp and those deleted by
Xp+1, Xp+2, . . . , Xq.
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Variable Selection Problem

We examine the effect of variable deletion under two conditions:
1 The model that connects Y and the X’s has all β1, . . . , βq nonzero.
2 The model has β1, . . . , βp nonzero, but βp+1, . . . , βq zero.

What are the effects of including variables in an equaition when they should
be properly left out (because their population regression coefficients are
zero)?
What are consequences of omitting variables that should be included
(because their population regression coefficients are not zero)?

We will examine the effect of deletion of variables on the estimates of the
parameters and the predicted values of Y.
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Consequences of Variable Deletion

When fitting a model with the full set of regressors X1, X2, . . . , Xq, the
estimated parameters are denoted by β̂∗

0 , β̂∗
1 , . . . , β̂∗

q . When a reduced
model with p variables (p < q) is fitted we denote the estimated parameters
by β̂0, β̂1, . . . , β̂p.
ŷ∗
i and ŷi represent the predicted values from the full (q) and partial (p) set
of variables.

Effect: Omitted Variable Bias

β̂0, β̂1, . . . , β̂p are biased estimates of β1, β2, . . . , βp unless the remaining β’s in
the model (βp+1, . . . , βq) are zero or the variables X1, X2, . . . , Xp are orthogonal to
the variable set Xp+1, . . . , Xq.
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Effect on Coefficients

Var(β̂∗
j ) ≥ Var(β̂j) for j = 0, 1, . . . , p

The estimates β̂∗
0 , β̂∗

1 , . . . , β̂∗
p have less precision than β̂1, β̂2, . . . , β̂p.

The variance of the estimated regression coefficients for variables in the
reduced model are not greater than the corresponding estimates for the full
model.
Deletion of variables usually decreases (and never increases) the variance of
the retained regression coefficients.
As β̂j’s are biased and β̂∗

j ’s are not, the variances should not be compared
directly. It would be better to compareMSE(β̂j) against Var(β̂∗

j ).

What is the difference between the mean squared error (MSE) and the variance?
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Effect on Predictions

The prediction ŷi is biased unless the deleted variables have coefficients of
zero, or the set fo retained variables are orthogonal to the set of deleted
variables.
The variance of the predicted value from the subset model is smaller or
equal to the variance of the predicted value from the full model:
Var(ŷi) ≤ Var(ŷ∗

i ).
The insights about the predictiosn follows from the effects on the estimated
coefficients as the predicitons are determined by them. Biased coefficients
lead to bias estimates and the same rationale for the effects on the variance
(or MSE) holds.
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Rationale of Variable Selection

Even though the variables deleted have nonzero regression coefficients, the
regression coefficients of the retained variables may be estimated with
smaller variance from the subset model than from the full model.
The price price paid for deleting variables is in the introduction of bias in the
estimates.

Conclusion
There are conditions where the MSE of the biased estimates will be smaller than the
variance of their unbiased estimates. In those cases, the gain in precision is not offset
by the square of the bias.
If some of the retained variables are extraneous or unessential (zero coefficients or
coefficients whose magnitude are smaller than the standard deviation of the
estimates), the inclusion of these variables leads to a loss of precision in estimation
and prediction.
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Uses of Regression Equation

Regression equations have many uses and it is good advice to clarify for which
purpose a model will be used, before starting an analysis. The most common
use cases for regression equations are:

1 Description and Model Building
2 Estimation and Prediction
3 Control

The process of variable selection should be viewed as an intensive analysis of the
correlational structure of the predictor variables and how they individually and
jointly affect the response variable under study.
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Use Case: Description and Model Building

When describing a given process or finding a model for a complex
interaction system, the purpose of the equation ma be purely descriptive to
clarify the nature of the complex interaction.
For this propose there are two conflicting requirements:
1 To account for as much of the variation as possible, which suggest the

inclusion otfa large number of variables.
2 To adhere to the principle of parsimony, which suggest to describe the process

with as few variables as possible to foster understanding and ease of
interpretation.

In essence we try to choose the smallest number of predictor variables that
account for themost substantial part of the variation in the response.
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Use Case: Estimation and Prediction

A regression equation can also be constructed for prediction (or forecasting
when time is involved as predictor).
The goal is to predict the value of a future observation or estimated the
mean response corresponding to a given observation. The observed values
may potentially lie close to or outside of the observed ranges (e.g. in the
future).
For this purpose the variables accounted for in the regression equation are
selected with a focus towardminimizing the MSE of the prediction.
Minimizing out-of-sample sample statistics (e.g. MSE) is not directly
achievable by minimizing within-sample statistics. This means that
optimizing for e.g. R2 does not yield necessarily precise predictions or
forecasts.

15



Use Case: Control

The purpose in control application sis to determine the magnitude by which
the value of a predictor variable must be altered to obtain a specified value
of the response (target).
The regression function is seen as a (impulse) response function, with Y as
the response variable. Key to effective control procedures are accurate
measurements; that is the standard errors of the coefficients are small.
This application is closely related to forecasting an control theory, in which
regression principles play an essential role.
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Uses of Regression Equation

The main point to be noted here is that the purpose for which the
regression equation is constructed determines the criterion that is to be
optimized in its formulation.
Occasionally an equation that is constructed for one application can also be
useful for the other purposes. However, in most cases the resulting optimla
equations differ.
It follows, that a number of subset of variables that may be best for one
purpose man not be best for anther. The concept of the “best” (as always)
requires additional qualification.
As there is no universal “best” set of variables, a good variable selection
procedure should point out multiple adqaute sets that could be used in
forming an equation.
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Criteria for Evaluating Equations

To judge the adequacy of various fitted equations we need criterion. More
specifically we describe:

1 Residual Mean Square
2 Mallows Cp
3 Information Criteria
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Residual Mean Square

RMSp =
SSEp
n − p

RMSp denotes the residual mean square obteanted from a p term quation
(usually constant term an p − 1 variables).Between two equations the one
with smaller RMS is usually preferred.
RMSp is closely related to the multiple correlation coefficient R2 and its
adjusted counterpart R2a and when comparing models with different number
of predictors R2p is more appropriate as it penalizes for the number of
predictor variables in the model.
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Mallows Cp

As the predicted values obtained from a regression equation based on a
subset of variables, the performance should be judged using a criterion
based on the MSE. The standardized mean squared error of prediction Jp is
given below an can be estimated by Cp

Jp =
1
σ2

n∑
i=1

MSE(ŷi) Cp =
SSEp
σ̂2 + (2p − n)

TheMSE(ŷi) has two components, the variance of the prediction arising from
estimation and a bias component arising from the deletion fo variables.
For the Cp, the value of σ̂2 is usually obtaned from the linear model with the
full set of variables.
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Mallows Cp

Cp = p holds when there is no bias. The deviation of Cp from pmeasures the
bias.
More specifically: Cp measures the performance of the variables in terms of
the standardized total mean square error of teh prediction for the observed
data points irrespective of the unknown true model.
Subsets of variables that produce values of Cp close to “p” are the desirable
subsets. Inspection is usually done graphically, by plotting Cp (Y-Axis) versus
p (X-Axis).
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Information Criteria

AICp = n ln(SSEp/n) + 2p

Variable selection can be seen as a special case of model selection, which
allows Information Criteria to be used. The Akaike Information Criterion
(AIC) tries to balance the conflicting demands fo accuracy (fit) and simplicity
(small number of variables).
A model with smaller AIC is preferred. The numerical value of AIC for a
single model is not very meaningful and models with small differences in AIC
should be treated as equally adequate.
AIC also allows to compare non-nested models, where we cannon perform
an F-Test.
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Information Criteria

In addition to the AIC many additional information criteria have been
proposed, which differ by the severity of penalty for p. The most common
derivations are the BIC and the AICc.

BICp = n ln(SSEp/n) + p [ln(n)]

The penalty of the BIC is more severe when n > 8. This tends to control
overfitting (resulting in a choice of larger p) tendency of the AIC.

AICcp = AICp +
1(p + 3)(p + 3)
n − p − 3

The correction of the AIC is small for large n and moderate p. The correction
is large, when n is small and p is large, which should generally be avoided.
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Evaluation all possible Equations

Given that the dataset is not extremely large (n and q), the amount of
available computing power usually allows for calculating all possible
equations.
A dataset with q variables results in a total number of fitted equations of 2q

(q = 8 → 28 = 256 models including a trivial, constant only and a full model).
This process usually leads to accumulation of the α error and requires
special adjustment schemes for the employed significance level in
dependence of the conducted hypothesis tests to avoid drawing false
conclusions (e.g. Bonferroni-Holm-Correction).
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Variable Selection Procedures

We consider the following procedures that do not require calculating all possible
models. The discussed approaches are:

1 Forward Selection Procedure (FS)
2 Backward Selection Procedure (BS)
3 Stepwise Method
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Forward Selection (FS)

Forward Selection starts with a model without regressors and the first
included variable is the one that has the highest correlation with the
response.
Given that the estimated coefficient is significantly different from zero
(usually a low t-value is used) the variable is retained and selection
continues.
The second variable is the one which has the highest correlation with Y after
Y has be adjusted for the effect of the first variable (residuals from the first
regression). The process is then repeated.
The process is terminated when the last variable would enter with an
insignificant coefficient or all variables have been included in the model.
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Bachward Elimination (BE)

Backward elimination stats with the full equation and successively drops one
variable at a time. The variables are dropped on the basis of their
contribution to the reduction of error sum of squares.
The first variable deleted is the one with the smallest contribution to the
reduction of error sum of squares, which is equivalent to deleting the
variable with the smallest t-Statistic.
The procedure is terminated when all retained variables have are significant.
In most backward elimination procedures the cutoff value for the t-Tests is
set high, so that the procedure runs through the whole set of variables.
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Stepwise Method

The stepwise method is essentially a forward selection procedure, but with
the addition that at each step the deletion of a variable is considered as well.
Stepwise procedures allow deleting a previously included variable.
The calculations for inclusion or removal of a variable are the same as in the
FS and BE approaches, but often different cutoff values are used.
The same approach can be carried out using the information criteria instead
of relying on the t-values. This is different as these procedures are driven by
all variables in the model. The termination of such procedures is solely
based on the decrease of the information criterion.
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Remarks

Automatic model building procedures should always be treated with
caution.
The order of inclusion or deletion as well as the t-values do not reflect
importance!
Collinear data usually causes problems with automatic procedures, but the
BE procedure is reported to be more robust against collinearity.

All final models need to be rejected if their residuals and/or additional evaluation
statistics are not adequate.
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Conclusion

Variable selection is a mixture of art and science, and should be performed
with care and caution.
The outlined set of approaches should serve as guideline and are no fixed
formal procedure.
Variable selection should (and cannot) be performed mechanically as an end
in itself but rather as an exploration into the structure of the data analyzed.
Good research papers describe the most interesting and relevant parts of
those explorations and do not suggest that there is one universal answers to
all questions related to the data.

Here, as well as in all true explorations the explorer is guided by theory,
intuition and common sense.
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Course Closing

We have not succeeded in answering all our problems. The answers we
have found only serve to raise a whole set of new questions. In some
ways we feel we are as confused as ever, but we believe we are confused
on a higher level and about more important things.

Posted outside the mathematics reading room
Tromsø University, Bernt Øksendal
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And now?

The book contains three examples for the model building procedures:
▶ Supervisor Performance Data (Recap for Methods)
▶ Homicide Data (Multicollinearity)
▶ Pollution Data (Ridge Regression)

Chapter 11.15 also provides a nice overview for all steps to consider in an
analysis. Remember that this is not a fixed recipe!
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Your Turn
Choose one of the datasets and
build an adequate model.



Supervisor Performance: Forward Selection

# Start with correlation coefficients
cor(P060)[1, ]
# X1 has highest correlation with Y
mod1 <- lm(Y ~ 1 + X1, data=P060)
sapply(P060[,-c(1,2)], function(x,y){cor(x,y)},y=residuals(mod1))
# X3 hast highest correlation with Y after adjusting for included variables
mod2 <- lm(Y ~ 1 + X1 + X3, data=P060)
summary(mod2)
sapply(P060[,-c(1,2,4)], function(x,y){cor(x,y)},y=residuals(mod2))
# X6 has highest correlation with Y after adjusting for included variables
mod3 <- lm(Y ~ 1 + X1 + X3 + X6, data=P060)
summary(mod3)
sapply(P060[,-c(1,2,4,7)], function(x,y){cor(x,y)},y=residuals(mod3))
# X2 has highest correlation with Y after adjusting for included variables
mod4 <- lm(Y ~ 1 + X1 + X3 + X6 + X2, data=P060)
summary(mod4)
sapply(P060[,-c(1,2,4,7,3)], function(x,y){cor(x,y)},y=residuals(mod4))
# X5 has highest correlation with Y after adjusting for included variables
mod5 <- lm(Y ~ 1 + X1 + X3 + X6 + X2 + X5, data=P060)
summary(mod5)
# X4 is the only remaining variable
mod6 <- lm(Y ~ 1 + X1 + X3 + X6 + X2 + X5 + X4, data=P060)
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